Cargando…
U-Net Architecture for Prostate Segmentation: The Impact of Loss Function on System Performance
Segmentation of the prostate gland from magnetic resonance images is rapidly becoming a standard of care in prostate cancer radiotherapy treatment planning. Automating this process has the potential to improve accuracy and efficiency. However, the performance and accuracy of deep learning models var...
Autores principales: | Montazerolghaem, Maryam, Sun, Yu, Sasso, Giuseppe, Haworth, Annette |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135670/ https://www.ncbi.nlm.nih.gov/pubmed/37106600 http://dx.doi.org/10.3390/bioengineering10040412 |
Ejemplares similares
-
Modified U-NET Architecture for Segmentation of Skin Lesion
por: Anand, Vatsala, et al.
Publicado: (2022) -
Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures
por: Abedalla, Ayat, et al.
Publicado: (2021) -
Structure boundary-preserving U-Net for prostate ultrasound image segmentation
por: Bi, Hui, et al.
Publicado: (2022) -
Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation
por: Lu, Haoran, et al.
Publicado: (2022) -
Image Semantic Segmentation of Underwater Garbage with Modified U-Net Architecture Model
por: Wei, Lifu, et al.
Publicado: (2022)