Cargando…

Mitochondria-Targeted Antioxidants as a Therapeutic Strategy for Chronic Obstructive Pulmonary Disease

Oxidative stress is a major hallmark of COPD, contributing to inflammatory signaling, corticosteroid resistance, DNA damage, and accelerated lung aging and cellular senescence. Evidence suggests that oxidative damage is not solely due to exogenous exposure to inhaled irritants, but also endogenous s...

Descripción completa

Detalles Bibliográficos
Autores principales: Fairley, Lauren H., Das, Shatarupa, Dharwal, Vivek, Amorim, Nadia, Hegarty, Karl J., Wadhwa, Ridhima, Mounika, Guntipally, Hansbro, Philip M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135688/
https://www.ncbi.nlm.nih.gov/pubmed/37107348
http://dx.doi.org/10.3390/antiox12040973
Descripción
Sumario:Oxidative stress is a major hallmark of COPD, contributing to inflammatory signaling, corticosteroid resistance, DNA damage, and accelerated lung aging and cellular senescence. Evidence suggests that oxidative damage is not solely due to exogenous exposure to inhaled irritants, but also endogenous sources of oxidants in the form of reactive oxygen species (ROS). Mitochondria, the major producers of ROS, exhibit impaired structure and function in COPD, resulting in reduced oxidative capacity and excessive ROS production. Antioxidants have been shown to protect against ROS-induced oxidative damage in COPD, by reducing ROS levels, reducing inflammation, and protecting against the development of emphysema. However, currently available antioxidants are not routinely used in the management of COPD, suggesting the need for more effective antioxidant agents. In recent years, a number of mitochondria-targeted antioxidant (MTA) compounds have been developed that are capable of crossing the mitochondria lipid bilayer, offering a more targeted approach to reducing ROS at its source. In particular, MTAs have been shown to illicit greater protective effects compared to non-targeted, cellular antioxidants by further reducing apoptosis and offering greater protection against mtDNA damage, suggesting they are promising therapeutic agents for the treatment of COPD. Here, we review evidence for the therapeutic potential of MTAs as a treatment for chronic lung disease and discuss current challenges and future directions.