Cargando…
Mn-Based Methacrylated Gellan Gum Hydrogels for MRI-Guided Cell Delivery and Imaging
This work aims to engineer a new stable injectable Mn-based methacrylated gellan gum (Mn/GG-MA) hydrogel for real-time monitored cell delivery into the central nervous system. To enable the hydrogel visualization under Magnetic Resonance Imaging (MRI), GG-MA solutions were supplemented with paramagn...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135712/ https://www.ncbi.nlm.nih.gov/pubmed/37106614 http://dx.doi.org/10.3390/bioengineering10040427 |
Sumario: | This work aims to engineer a new stable injectable Mn-based methacrylated gellan gum (Mn/GG-MA) hydrogel for real-time monitored cell delivery into the central nervous system. To enable the hydrogel visualization under Magnetic Resonance Imaging (MRI), GG-MA solutions were supplemented with paramagnetic Mn(2+) ions before its ionic crosslink with artificial cerebrospinal fluid (aCSF). The resulting formulations were stable, detectable by T1-weighted MRI scans and also injectable. Cell-laden hydrogels were prepared using the Mn/GG-MA formulations, extruded into aCSF for crosslink, and after 7 days of culture, the encapsulated human adipose-derived stem cells remained viable, as assessed by Live/Dead assay. In vivo tests, using double mutant MBP(shi/shi)/rag2 immunocompromised mice, showed that the injection of Mn/GG-MA solutions resulted in a continuous and traceable hydrogel, visible on MRI scans. Summing up, the developed formulations are suitable for both non-invasive cell delivery techniques and image-guided neurointerventions, paving the way for new therapeutic procedures. |
---|