Cargando…
In Vitro Cytotoxic Effect of Aqueous Extracts from Leaves and Rhizomes of the Seagrass Posidonia oceanica (L.) Delile on HepG2 Liver Cancer Cells: Focus on Autophagy and Apoptosis
SIMPLE SUMMARY: Posidonia oceanica is a widely distributed and abundant endemic seagrass in the Mediterranean area. In the attempt to identify new compounds that might inhibit specific targets in the signal transduction of liver carcinogenesis, aqueous extracts from green and brown (beached) leaves...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135731/ https://www.ncbi.nlm.nih.gov/pubmed/37106816 http://dx.doi.org/10.3390/biology12040616 |
Sumario: | SIMPLE SUMMARY: Posidonia oceanica is a widely distributed and abundant endemic seagrass in the Mediterranean area. In the attempt to identify new compounds that might inhibit specific targets in the signal transduction of liver carcinogenesis, aqueous extracts from green and brown (beached) leaves and rhizomes of the plant were prepared and tested for their cytotoxic activity on HepG2 hepatic cancer cells in culture. Here, we have identified the death-promoting mechanisms of green-leaf and rhizome extracts that involve the modulation of autophagy, apoptosis, and cell redox status, although partially differentiating conceivably due to their different compositions. These marine-derived natural materials are worth further exploration aimed at developing novel alternative prevention and/or treatment agents against liver tumors and beneficial supplements for the formulation of functional food and food-packaging material endowed with antioxidant and anticancer properties. ABSTRACT: Aqueous extracts from Posidonia oceanica’s green and brown (beached) leaves and rhizomes were prepared, submitted to phenolic compound and proteomic analysis, and examined for their potential cytotoxic effect on HepG2 liver cancer cells in culture. The chosen endpoints related to survival and death were cell viability and locomotory behavior, cell-cycle analysis, apoptosis and autophagy, mitochondrial membrane polarization, and cell redox state. Here, we show that 24 h exposure to both green-leaf- and rhizome-derived extracts decreased tumor cell number in a dose–response manner, with a mean half maximal inhibitory concentration (IC(50)) estimated at 83 and 11.5 μg of dry extract/mL, respectively. Exposure to the IC(50) of the extracts appeared to inhibit cell motility and long-term cell replicating capacity, with a more pronounced effect exerted by the rhizome-derived preparation. The underlying death-promoting mechanisms identified involved the down-regulation of autophagy, the onset of apoptosis, the decrease in the generation of reactive oxygen species, and the dissipation of mitochondrial transmembrane potential, although, at the molecular level, the two extracts appeared to elicit partially differentiating effects, conceivably due to their diverse composition. In conclusion, P. oceanica extracts merit further investigation to develop novel promising prevention and/or treatment agents, as well as beneficial supplements for the formulation of functional foods and food-packaging material with antioxidant and anticancer properties. |
---|