Cargando…
SigPrimedNet: A Signaling-Informed Neural Network for scRNA-seq Annotation of Known and Unknown Cell Types
SIMPLE SUMMARY: Single-cell data has enabled the study of cell dynamics at an unprecedented resolution. Cell type and functional annotation are crucial to address during any analysis involving transcriptomic data at the cell level since both annotations provide the basis to understand the complex bi...
Autores principales: | Gundogdu, Pelin, Alamo, Inmaculada, Nepomuceno-Chamorro, Isabel A., Dopazo, Joaquin, Loucera, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135788/ https://www.ncbi.nlm.nih.gov/pubmed/37106779 http://dx.doi.org/10.3390/biology12040579 |
Ejemplares similares
-
Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data
por: Gundogdu, Pelin, et al.
Publicado: (2022) -
TraSig: inferring cell-cell interactions from pseudotime ordering of scRNA-Seq data
por: Li, Dongshunyi, et al.
Publicado: (2022) -
Automated methods for cell type annotation on scRNA-seq data
por: Pasquini, Giovanni, et al.
Publicado: (2021) -
SigHotSpotter: scRNA-seq-based computational tool to control cell subpopulation phenotypes for cellular rejuvenation strategies
por: Ravichandran, Srikanth, et al.
Publicado: (2020) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023)