Cargando…

Kinetic Determination of Acetylsalicylic Acid Using a CdTe/AgInS(2) Photoluminescence Probe and Different Chemometric Models

The combination of multiple quantum dots (QDs) in a multi-emitter nanoprobe can be envisaged as a promising sensing scheme, as it enables obtaining a collective response of individual emitters towards a given analyte and allows for achieving specific analyte-response profiles. The processing of thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Castro, Rafael C., Páscoa, Ricardo N. M. J., Saraiva, M. Lúcia M. F. S., Santos, João L. M., Ribeiro, David S. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135845/
https://www.ncbi.nlm.nih.gov/pubmed/37185512
http://dx.doi.org/10.3390/bios13040437
Descripción
Sumario:The combination of multiple quantum dots (QDs) in a multi-emitter nanoprobe can be envisaged as a promising sensing scheme, as it enables obtaining a collective response of individual emitters towards a given analyte and allows for achieving specific analyte-response profiles. The processing of these profiles using adequate chemometric methods empowers a more sensitive, reliable and selective determination of the target analyte. In this work, we developed a kinetic fluorometric method consisting of a dual CdTe/AgInS(2) quantum dots photoluminescence probe for the determination of acetylsalicylic acid (ASA). The fluorometric response was acquired as second-order time-based excitation/emission matrices that were subsequently processed using chemometric methods seeking to assure the second-order advantage. The data obtained in this work are considered second-order data as they have a three-dimensional size, I × J × K (where I represents the samples’ number, J the fluorescence emission wavelength while K represents the time). In order to select the most adequate chemometric method regarding the obtained data structure, different chemometric models were tested, namely unfolded partial least squares (U-PLS), N-way partial least squares (N-PLS), multilayer feed-forward neural networks (MLF-NNs) and radial basis function neural networks (RBF-NNs).