Cargando…
WBM-DLNets: Wrapper-Based Metaheuristic Deep Learning Networks Feature Optimization for Enhancing Brain Tumor Detection
This study presents wrapper-based metaheuristic deep learning networks (WBM-DLNets) feature optimization algorithms for brain tumor diagnosis using magnetic resonance imaging. Herein, 16 pretrained deep learning networks are used to compute the features. Eight metaheuristic optimization algorithms,...
Autores principales: | Ali, Muhammad Umair, Hussain, Shaik Javeed, Zafar, Amad, Bhutta, Muhammad Raheel, Lee, Seung Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135892/ https://www.ncbi.nlm.nih.gov/pubmed/37106662 http://dx.doi.org/10.3390/bioengineering10040475 |
Ejemplares similares
-
BU-DLNet: Breast Ultrasonography-Based Cancer Detection Using Deep-Learning Network Selection and Feature Optimization
por: Zafar, Amad, et al.
Publicado: (2023) -
Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study
por: Zafar, Amad, et al.
Publicado: (2023) -
A Robust Computer-Aided Automated Brain Tumor Diagnosis Approach Using PSO-ReliefF Optimized Gaussian and Non-Linear Feature Space
por: Ali, Muhammad Umair, et al.
Publicado: (2022) -
An Efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets
por: Pirgazi, Jamshid, et al.
Publicado: (2019) -
Improved Ablative Properties of Nanodiamond-Reinforced Carbon Fiber–Epoxy Matrix Composites
por: Farooq, Umar, et al.
Publicado: (2021)