Cargando…
ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems
Early diagnosis and classification of arrhythmia from an electrocardiogram (ECG) plays a significant role in smart healthcare systems for the health monitoring of individuals with cardiovascular diseases. Unfortunately, the nonlinearity and low amplitude of ECG recordings make the classification pro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135930/ https://www.ncbi.nlm.nih.gov/pubmed/37106616 http://dx.doi.org/10.3390/bioengineering10040429 |
_version_ | 1785032098073018368 |
---|---|
author | Hassaballah, Mahmoud Wazery, Yaser M. Ibrahim, Ibrahim E. Farag, Aly |
author_facet | Hassaballah, Mahmoud Wazery, Yaser M. Ibrahim, Ibrahim E. Farag, Aly |
author_sort | Hassaballah, Mahmoud |
collection | PubMed |
description | Early diagnosis and classification of arrhythmia from an electrocardiogram (ECG) plays a significant role in smart healthcare systems for the health monitoring of individuals with cardiovascular diseases. Unfortunately, the nonlinearity and low amplitude of ECG recordings make the classification process difficult. Thus, the performance of most traditional machine learning (ML) classifiers is questionable, as the interrelationship between the learning parameters is not well modeled, especially for data features with high dimensions. To address the limitations of ML classifiers, this paper introduces an automatic arrhythmia classification approach based on the integration of a recent metaheuristic optimization (MHO) algorithm and ML classifiers. The role of the MHO is to optimize the search parameters of the classifiers. The approach consists of three steps: the preprocessing of the ECG signal, the extraction of the features, and the classification. The learning parameters of four supervised ML classifiers were utilized for the classification task; support vector machine (SVM), k-nearest neighbors (kNNs), gradient boosting decision tree (GBDT), and random forest (RF) were optimized using the MHO algorithm. To validate the advantage of the proposed approach, several experiments were conducted on three common databases, including the Massachusetts Institute of Technology (MIT-BIH), the European Society of Cardiology ST-T (EDB), and the St. Petersburg Institute of Cardiological Techniques 12-lead Arrhythmia (INCART). The obtained results showed that the performance of all the tested classifiers were significantly improved after integrating the MHO algorithm, with the average ECG arrhythmia classification accuracy reaching 99.92% and a sensitivity of 99.81%, outperforming the state-of the-art methods. |
format | Online Article Text |
id | pubmed-10135930 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101359302023-04-28 ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems Hassaballah, Mahmoud Wazery, Yaser M. Ibrahim, Ibrahim E. Farag, Aly Bioengineering (Basel) Article Early diagnosis and classification of arrhythmia from an electrocardiogram (ECG) plays a significant role in smart healthcare systems for the health monitoring of individuals with cardiovascular diseases. Unfortunately, the nonlinearity and low amplitude of ECG recordings make the classification process difficult. Thus, the performance of most traditional machine learning (ML) classifiers is questionable, as the interrelationship between the learning parameters is not well modeled, especially for data features with high dimensions. To address the limitations of ML classifiers, this paper introduces an automatic arrhythmia classification approach based on the integration of a recent metaheuristic optimization (MHO) algorithm and ML classifiers. The role of the MHO is to optimize the search parameters of the classifiers. The approach consists of three steps: the preprocessing of the ECG signal, the extraction of the features, and the classification. The learning parameters of four supervised ML classifiers were utilized for the classification task; support vector machine (SVM), k-nearest neighbors (kNNs), gradient boosting decision tree (GBDT), and random forest (RF) were optimized using the MHO algorithm. To validate the advantage of the proposed approach, several experiments were conducted on three common databases, including the Massachusetts Institute of Technology (MIT-BIH), the European Society of Cardiology ST-T (EDB), and the St. Petersburg Institute of Cardiological Techniques 12-lead Arrhythmia (INCART). The obtained results showed that the performance of all the tested classifiers were significantly improved after integrating the MHO algorithm, with the average ECG arrhythmia classification accuracy reaching 99.92% and a sensitivity of 99.81%, outperforming the state-of the-art methods. MDPI 2023-03-28 /pmc/articles/PMC10135930/ /pubmed/37106616 http://dx.doi.org/10.3390/bioengineering10040429 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hassaballah, Mahmoud Wazery, Yaser M. Ibrahim, Ibrahim E. Farag, Aly ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems |
title | ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems |
title_full | ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems |
title_fullStr | ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems |
title_full_unstemmed | ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems |
title_short | ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems |
title_sort | ecg heartbeat classification using machine learning and metaheuristic optimization for smart healthcare systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135930/ https://www.ncbi.nlm.nih.gov/pubmed/37106616 http://dx.doi.org/10.3390/bioengineering10040429 |
work_keys_str_mv | AT hassaballahmahmoud ecgheartbeatclassificationusingmachinelearningandmetaheuristicoptimizationforsmarthealthcaresystems AT wazeryyaserm ecgheartbeatclassificationusingmachinelearningandmetaheuristicoptimizationforsmarthealthcaresystems AT ibrahimibrahime ecgheartbeatclassificationusingmachinelearningandmetaheuristicoptimizationforsmarthealthcaresystems AT faragaly ecgheartbeatclassificationusingmachinelearningandmetaheuristicoptimizationforsmarthealthcaresystems |