Cargando…

AI Model for Detection of Abdominal Hemorrhage Lesions in Abdominal CT Images

Information technology has been actively utilized in the field of imaging diagnosis using artificial intelligence (AI), which provides benefits to human health. Readings of abdominal hemorrhage lesions using AI can be utilized in situations where lesions cannot be read due to emergencies or the abse...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Young-Jin, Cho, Hui-Sup, Kim, Myoung-Nam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136064/
https://www.ncbi.nlm.nih.gov/pubmed/37106689
http://dx.doi.org/10.3390/bioengineering10040502
Descripción
Sumario:Information technology has been actively utilized in the field of imaging diagnosis using artificial intelligence (AI), which provides benefits to human health. Readings of abdominal hemorrhage lesions using AI can be utilized in situations where lesions cannot be read due to emergencies or the absence of specialists; however, there is a lack of related research due to the difficulty in collecting and acquiring images. In this study, we processed the abdominal computed tomography (CT) database provided by multiple hospitals for utilization in deep learning and detected abdominal hemorrhage lesions in real time using an AI model designed in a cascade structure using deep learning, a subfield of AI. The AI model was used a detection model to detect lesions distributed in various sizes with high accuracy, and a classification model that could screen out images without lesions was placed before the detection model to solve the problem of increasing false positives owing to the input of images without lesions in actual clinical cases. The developed method achieved 93.22% sensitivity and 99.60% specificity.