Cargando…
Automated Diagnosis of Diabetic Retinopathy Using Deep Learning: On the Search of Segmented Retinal Blood Vessel Images for Better Performance
Diabetic retinopathy is one of the most significant retinal diseases that can lead to blindness. As a result, it is critical to receive a prompt diagnosis of the disease. Manual screening can result in misdiagnosis due to human error and limited human capability. In such cases, using a deep learning...
Autores principales: | Khan, Mohammad B., Ahmad, Mohiuddin, Yaakob, Shamshul B., Shahrior, Rahat, Rashid, Mohd A., Higa, Hiroki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136337/ https://www.ncbi.nlm.nih.gov/pubmed/37106599 http://dx.doi.org/10.3390/bioengineering10040413 |
Ejemplares similares
-
MTNet: A combined diagnosis algorithm of vessel segmentation and diabetic retinopathy for retinal images
por: Liu, Ruochen, et al.
Publicado: (2022) -
Automated segmentation of retinal blood vessels in spectral domain optical coherence tomography scans
por: Pilch, Matthäus, et al.
Publicado: (2012) -
Segmentation of retinal vessels based on MRANet
por: Yi, Sanli, et al.
Publicado: (2022) -
Retinal Vessel Segmentation by Deep Residual Learning with Wide Activation
por: Ma, Yuliang, et al.
Publicado: (2020) -
Automated detection of diabetic retinopathy in retinal images
por: Valverde, Carmen, et al.
Publicado: (2016)