Cargando…
Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution
Accurate segmentation of brain tumors from magnetic resonance 3D images (MRI) is critical for clinical decisions and surgical planning. Radiologists usually separate and analyze brain tumors by combining images of axial, coronal, and sagittal views. However, traditional convolutional neural network...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136543/ https://www.ncbi.nlm.nih.gov/pubmed/37190614 http://dx.doi.org/10.3390/brainsci13040650 |
_version_ | 1785032244132315136 |
---|---|
author | Guan, Xin Zhao, Yushan Nyatega, Charles Okanda Li, Qiang |
author_facet | Guan, Xin Zhao, Yushan Nyatega, Charles Okanda Li, Qiang |
author_sort | Guan, Xin |
collection | PubMed |
description | Accurate segmentation of brain tumors from magnetic resonance 3D images (MRI) is critical for clinical decisions and surgical planning. Radiologists usually separate and analyze brain tumors by combining images of axial, coronal, and sagittal views. However, traditional convolutional neural network (CNN) models tend to use information from only a single view or one by one. Moreover, the existing models adopt a multi-branch structure with different-size convolution kernels in parallel to adapt to various tumor sizes. However, the difference in the convolution kernels’ parameters cannot precisely characterize the feature similarity of tumor lesion regions with various sizes, connectivity, and convexity. To address the above problems, we propose a hierarchical multi-view convolution method that decouples the standard 3D convolution into axial, coronal, and sagittal views to provide complementary-view features. Then, every pixel is classified by ensembling the discriminant results from the three views. Moreover, we propose a multi-branch kernel-sharing mechanism with a dilated rate to obtain parameter-consistent convolution kernels with different receptive fields. We use the BraTS2018 and BraTS2020 datasets for comparison experiments. The average Dice coefficients of the proposed network on the BraTS2020 dataset can reach 78.16%, 89.52%, and 83.05% for the enhancing tumor (ET), whole tumor (WT), and tumor core (TC), respectively, while the number of parameters is only 0.5 M. Compared with the baseline network for brain tumor segmentation, the accuracy was improved by 1.74%, 0.5%, and 2.19%, respectively. |
format | Online Article Text |
id | pubmed-10136543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101365432023-04-28 Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution Guan, Xin Zhao, Yushan Nyatega, Charles Okanda Li, Qiang Brain Sci Article Accurate segmentation of brain tumors from magnetic resonance 3D images (MRI) is critical for clinical decisions and surgical planning. Radiologists usually separate and analyze brain tumors by combining images of axial, coronal, and sagittal views. However, traditional convolutional neural network (CNN) models tend to use information from only a single view or one by one. Moreover, the existing models adopt a multi-branch structure with different-size convolution kernels in parallel to adapt to various tumor sizes. However, the difference in the convolution kernels’ parameters cannot precisely characterize the feature similarity of tumor lesion regions with various sizes, connectivity, and convexity. To address the above problems, we propose a hierarchical multi-view convolution method that decouples the standard 3D convolution into axial, coronal, and sagittal views to provide complementary-view features. Then, every pixel is classified by ensembling the discriminant results from the three views. Moreover, we propose a multi-branch kernel-sharing mechanism with a dilated rate to obtain parameter-consistent convolution kernels with different receptive fields. We use the BraTS2018 and BraTS2020 datasets for comparison experiments. The average Dice coefficients of the proposed network on the BraTS2020 dataset can reach 78.16%, 89.52%, and 83.05% for the enhancing tumor (ET), whole tumor (WT), and tumor core (TC), respectively, while the number of parameters is only 0.5 M. Compared with the baseline network for brain tumor segmentation, the accuracy was improved by 1.74%, 0.5%, and 2.19%, respectively. MDPI 2023-04-11 /pmc/articles/PMC10136543/ /pubmed/37190614 http://dx.doi.org/10.3390/brainsci13040650 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guan, Xin Zhao, Yushan Nyatega, Charles Okanda Li, Qiang Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution |
title | Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution |
title_full | Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution |
title_fullStr | Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution |
title_full_unstemmed | Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution |
title_short | Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution |
title_sort | brain tumor segmentation network with multi-view ensemble discrimination and kernel-sharing dilated convolution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136543/ https://www.ncbi.nlm.nih.gov/pubmed/37190614 http://dx.doi.org/10.3390/brainsci13040650 |
work_keys_str_mv | AT guanxin braintumorsegmentationnetworkwithmultiviewensemblediscriminationandkernelsharingdilatedconvolution AT zhaoyushan braintumorsegmentationnetworkwithmultiviewensemblediscriminationandkernelsharingdilatedconvolution AT nyategacharlesokanda braintumorsegmentationnetworkwithmultiviewensemblediscriminationandkernelsharingdilatedconvolution AT liqiang braintumorsegmentationnetworkwithmultiviewensemblediscriminationandkernelsharingdilatedconvolution |