Cargando…
Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution
Accurate segmentation of brain tumors from magnetic resonance 3D images (MRI) is critical for clinical decisions and surgical planning. Radiologists usually separate and analyze brain tumors by combining images of axial, coronal, and sagittal views. However, traditional convolutional neural network...
Autores principales: | Guan, Xin, Zhao, Yushan, Nyatega, Charles Okanda, Li, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136543/ https://www.ncbi.nlm.nih.gov/pubmed/37190614 http://dx.doi.org/10.3390/brainsci13040650 |
Ejemplares similares
-
Repeated Cross-Scale Structure-Induced Feature Fusion Network for 2D Hand Pose Estimation
por: Guan, Xin, et al.
Publicado: (2023) -
UnetDVH-Linear: Linear Feature Segmentation by Dilated Convolution with Vertical and Horizontal Kernels
por: Liao, Jiacai, et al.
Publicado: (2020) -
Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson’s disease: A voxel-based morphometry study
por: Nyatega, Charles Okanda, et al.
Publicado: (2022) -
Altered striatal functional connectivity and structural dysconnectivity in individuals with bipolar disorder: A resting state magnetic resonance imaging study
por: Okanda Nyatega, Charles, et al.
Publicado: (2022) -
Multi-View Ensemble Classification of Brain Connectivity Images for Neurodegeneration Type Discrimination
por: Fratello, Michele, et al.
Publicado: (2017)