Cargando…
Emotion Recognition from Spatio-Temporal Representation of EEG Signals via 3D-CNN with Ensemble Learning Techniques
The recognition of emotions is one of the most challenging issues in human–computer interaction (HCI). EEG signals are widely adopted as a method for recognizing emotions because of their ease of acquisition, mobility, and convenience. Deep neural networks (DNN) have provided excellent results in em...
Autores principales: | Yuvaraj, Rajamanickam, Baranwal, Arapan, Prince, A. Amalin, Murugappan, M., Mohammed, Javeed Shaikh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136603/ https://www.ncbi.nlm.nih.gov/pubmed/37190650 http://dx.doi.org/10.3390/brainsci13040685 |
Ejemplares similares
-
On the analysis of EEG power, frequency and asymmetry in Parkinson’s disease during emotion processing
por: Yuvaraj, Rajamanickam, et al.
Publicado: (2014) -
Comprehensive Analysis of Feature Extraction Methods for Emotion Recognition from Multichannel EEG Recordings
por: Yuvaraj, Rajamanickam, et al.
Publicado: (2023) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022) -
An Emotion Assessment of Stroke Patients by Using Bispectrum Features of EEG Signals
por: Wen Yean, Choong, et al.
Publicado: (2020) -
Fusion Graph Representation of EEG for Emotion Recognition
por: Li, Menghang, et al.
Publicado: (2023)