Cargando…
Platelet-Based Liquid Biopsies through the Lens of Machine Learning
SIMPLE SUMMARY: Liquid biopsies are a non-invasive way to diagnose and monitor cancer using blood tests. Machine learning can help understand the genetic data from these tests, but it is challenging to validate clinical applications. In our study, we first compiled a large-scale dataset for cancer c...
Autores principales: | Cygert, Sebastian, Pastuszak, Krzysztof, Górski, Franciszek, Sieczczyński, Michał, Juszczyk, Piotr, Rutkowski, Antoni, Lewalski, Sebastian, Różański, Robert, Jopek, Maksym Albin, Jassem, Jacek, Czyżewski, Andrzej, Wurdinger, Thomas, Best, Myron G., Żaczek, Anna J., Supernat, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136732/ https://www.ncbi.nlm.nih.gov/pubmed/37190262 http://dx.doi.org/10.3390/cancers15082336 |
Ejemplares similares
-
imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics
por: Pastuszak, Krzysztof, et al.
Publicado: (2021) -
Diagnostic Accuracy of Liquid Biopsy in Endometrial Cancer
por: Łukasiewicz, Marta, et al.
Publicado: (2021) -
Transcriptomic landscape of blood platelets in healthy donors
por: Supernat, Anna, et al.
Publicado: (2021) -
Longitudinal drug synergy assessment using convolutional neural network image-decoding of glioblastoma single-spheroid cultures
por: Giczewska, Anna, et al.
Publicado: (2023) -
Tumor Heterogeneity at Protein Level as an Independent Prognostic Factor in Endometrial Cancer()
por: Supernat, Anna, et al.
Publicado: (2014)