Cargando…
Classifying Malignancy in Prostate Glandular Structures from Biopsy Scans with Deep Learning
SIMPLE SUMMARY: In recent years, the prostate cancer histopathological description proposed by Gleason has emerged as a universal standard used for disease diagnosis and progression. Recently, a grading scheme on a point scale is based on Gleason patterns. Current scores are highly dependent on the...
Autores principales: | Fogarty, Ryan, Goldgof, Dmitry, Hall, Lawrence, Lopez, Alex, Johnson, Joseph, Gadara, Manoj, Stoyanova, Radka, Punnen, Sanoj, Pollack, Alan, Pow-Sang, Julio, Balagurunathan, Yoganand |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136774/ https://www.ncbi.nlm.nih.gov/pubmed/37190264 http://dx.doi.org/10.3390/cancers15082335 |
Ejemplares similares
-
Predicting clinically significant prostate cancer using DCE-MRI habitat descriptors
por: Parra, Andres N., et al.
Publicado: (2018) -
Erratum: Predicting clinically significant prostate cancer using DCE-MRI habitat descriptors
por: Parra, N. Andres, et al.
Publicado: (2019) -
Multiparametric-MRI and Targeted Biopsies in the Management of Prostate Cancer Patients on Active Surveillance
por: Sandler, Kiri, et al.
Publicado: (2015) -
Optimizing patient's selection for prostate biopsy: A single institution experience with multi-parametric MRI and the 4Kscore test for the detection of aggressive prostate cancer
por: Punnen, Sanoj, et al.
Publicado: (2018) -
Explaining Deep Features Using Radiologist-Defined Semantic Features and Traditional Quantitative Features
por: Paul, Rahul, et al.
Publicado: (2019)