Cargando…
Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages
The flagellin (FliC) of Salmonella typhimurium is a potential vaccine adjuvant as it can activate innate immunity and promote acquired immune responses. Macrophages are an important component of the innate immune system. The mechanism of flagellin’s adjuvant activity has been shown to be related to...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136974/ https://www.ncbi.nlm.nih.gov/pubmed/37185707 http://dx.doi.org/10.3390/cimb45040183 |
_version_ | 1785032347294367744 |
---|---|
author | Song, Li Xiong, Dan Wen, Yaya Tan, Ruimeng Kang, Xilong Jiao, Xinan Pan, Zhiming |
author_facet | Song, Li Xiong, Dan Wen, Yaya Tan, Ruimeng Kang, Xilong Jiao, Xinan Pan, Zhiming |
author_sort | Song, Li |
collection | PubMed |
description | The flagellin (FliC) of Salmonella typhimurium is a potential vaccine adjuvant as it can activate innate immunity and promote acquired immune responses. Macrophages are an important component of the innate immune system. The mechanism of flagellin’s adjuvant activity has been shown to be related to its ability to activate macrophages. However, few studies have comprehensively investigated the effects of Salmonella flagellin in macrophages using transcriptome sequencing. In this study, RNA-Seq was used to analyze the expression patterns of RAW264.7 macrophages induced by FliC to identify novel transcriptomic signatures in macrophages. A total of 2204 differentially expressed genes were found in the FliC-treated group compared with the control. Gene ontology and KEGG pathway analyses identified the top significantly regulated functional classification and canonical pathways, which were mainly related to immune responses and regulation. Inflammatory cytokines (IL-6, IL-1β, TNF-α, etc.) and chemokines (CXCL2, CXCL10, CCL2, etc.) were highly expressed in RAW264.7 cells following stimulation. Notably, flagellin significantly increased the expression of interferon (IFN)-β. In addition, previously unidentified IFN regulatory factors (IRFs) and IFN-stimulated genes (ISGs) were also significantly upregulated. The results of RNA-Seq were verified, and furthermore, we demonstrated that flagellin increased the expression of IFN-β and IFN-related genes (IRFs and ISGs) in bone marrow-derived dendritic cells and macrophages. These results suggested that Salmonella flagellin can activate IFN-β-related immune responses in macrophages, which provides new insight into the immune mechanisms of flagellin adjuvant. |
format | Online Article Text |
id | pubmed-10136974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101369742023-04-28 Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages Song, Li Xiong, Dan Wen, Yaya Tan, Ruimeng Kang, Xilong Jiao, Xinan Pan, Zhiming Curr Issues Mol Biol Article The flagellin (FliC) of Salmonella typhimurium is a potential vaccine adjuvant as it can activate innate immunity and promote acquired immune responses. Macrophages are an important component of the innate immune system. The mechanism of flagellin’s adjuvant activity has been shown to be related to its ability to activate macrophages. However, few studies have comprehensively investigated the effects of Salmonella flagellin in macrophages using transcriptome sequencing. In this study, RNA-Seq was used to analyze the expression patterns of RAW264.7 macrophages induced by FliC to identify novel transcriptomic signatures in macrophages. A total of 2204 differentially expressed genes were found in the FliC-treated group compared with the control. Gene ontology and KEGG pathway analyses identified the top significantly regulated functional classification and canonical pathways, which were mainly related to immune responses and regulation. Inflammatory cytokines (IL-6, IL-1β, TNF-α, etc.) and chemokines (CXCL2, CXCL10, CCL2, etc.) were highly expressed in RAW264.7 cells following stimulation. Notably, flagellin significantly increased the expression of interferon (IFN)-β. In addition, previously unidentified IFN regulatory factors (IRFs) and IFN-stimulated genes (ISGs) were also significantly upregulated. The results of RNA-Seq were verified, and furthermore, we demonstrated that flagellin increased the expression of IFN-β and IFN-related genes (IRFs and ISGs) in bone marrow-derived dendritic cells and macrophages. These results suggested that Salmonella flagellin can activate IFN-β-related immune responses in macrophages, which provides new insight into the immune mechanisms of flagellin adjuvant. MDPI 2023-03-27 /pmc/articles/PMC10136974/ /pubmed/37185707 http://dx.doi.org/10.3390/cimb45040183 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Li Xiong, Dan Wen, Yaya Tan, Ruimeng Kang, Xilong Jiao, Xinan Pan, Zhiming Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages |
title | Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages |
title_full | Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages |
title_fullStr | Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages |
title_full_unstemmed | Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages |
title_short | Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages |
title_sort | transcriptome sequencing reveals salmonella flagellin activation of interferon-β-related immune responses in macrophages |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136974/ https://www.ncbi.nlm.nih.gov/pubmed/37185707 http://dx.doi.org/10.3390/cimb45040183 |
work_keys_str_mv | AT songli transcriptomesequencingrevealssalmonellaflagellinactivationofinterferonbrelatedimmuneresponsesinmacrophages AT xiongdan transcriptomesequencingrevealssalmonellaflagellinactivationofinterferonbrelatedimmuneresponsesinmacrophages AT wenyaya transcriptomesequencingrevealssalmonellaflagellinactivationofinterferonbrelatedimmuneresponsesinmacrophages AT tanruimeng transcriptomesequencingrevealssalmonellaflagellinactivationofinterferonbrelatedimmuneresponsesinmacrophages AT kangxilong transcriptomesequencingrevealssalmonellaflagellinactivationofinterferonbrelatedimmuneresponsesinmacrophages AT jiaoxinan transcriptomesequencingrevealssalmonellaflagellinactivationofinterferonbrelatedimmuneresponsesinmacrophages AT panzhiming transcriptomesequencingrevealssalmonellaflagellinactivationofinterferonbrelatedimmuneresponsesinmacrophages |