Cargando…
AMCSMMA: Predicting Small Molecule–miRNA Potential Associations Based on Accurate Matrix Completion
Exploring potential associations between small molecule drugs (SMs) and microRNAs (miRNAs) is significant for drug development and disease treatment. Since biological experiments are expensive and time-consuming, we propose a computational model based on accurate matrix completion for predicting pot...
Autores principales: | Wang, Shudong, Ren, Chuanru, Zhang, Yulin, Pang, Shanchen, Qiao, Sibo, Wu, Wenhao, Lin, Boyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137058/ https://www.ncbi.nlm.nih.gov/pubmed/37190032 http://dx.doi.org/10.3390/cells12081123 |
Ejemplares similares
-
SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder
por: Wang, Shudong, et al.
Publicado: (2022) -
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
por: Pang, Shanchen, et al.
Publicado: (2021) -
MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug–Target Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2023) -
HSSG: Identification of Cancer Subtypes Based on Heterogeneity Score of A Single Gene
por: Pang, Shanchen, et al.
Publicado: (2022) -
MCMDA: Matrix completion for MiRNA-disease association prediction
por: Li, Jian-Qiang, et al.
Publicado: (2017)