Cargando…
Genetic Mapping and QTL Analysis of Fruit Traits in Melon (Cucumis melo L.)
Melon (Cucumis melo L.) is an important horticultural cash crop and its quality traits directly affect consumer choice and market price. These traits are controlled by genetic as well as environmental factors. In this study, a quantitative trait locus (QTL) mapping strategy was used to identify the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137213/ https://www.ncbi.nlm.nih.gov/pubmed/37185748 http://dx.doi.org/10.3390/cimb45040224 |
_version_ | 1785032406797910016 |
---|---|
author | Zhao, Haiyong Zhang, Taifeng Meng, Xiaobing Song, Jiayan Zhang, Chen Gao, Peng |
author_facet | Zhao, Haiyong Zhang, Taifeng Meng, Xiaobing Song, Jiayan Zhang, Chen Gao, Peng |
author_sort | Zhao, Haiyong |
collection | PubMed |
description | Melon (Cucumis melo L.) is an important horticultural cash crop and its quality traits directly affect consumer choice and market price. These traits are controlled by genetic as well as environmental factors. In this study, a quantitative trait locus (QTL) mapping strategy was used to identify the potential genetic loci controlling quality traits of melons (i.e., exocarp and pericarp firmness and soluble solid content) based on newly derived whole-genome single nucleotide polymorphism-based cleaved amplified polymorphic sequence (SNP-CAPS) markers. Specifically, SNPs of two melon varieties, M4-5 and M1-15, as revealed by whole-genome sequencing, were converted to the CAPS markers, which were used to construct a genetic linkage map comprising 12 chromosomes with a total length of 1414.88 cM, in the F(2) population of M4-5 and M1-15. The six identified QTLs included: SSC6.1 and SSC11.1 related to soluble solid content; EF12.1 associated with exocarp firmness; and EPF3.1, EPF3.2 and EPF7.1 related to edible pericarp firmness. These genes were located on five chromosomes (3, 6, 7, 11, and 12) in the flanking regions of the CAPS markers. Moreover, the newly developed CAPS markers will be useful in guiding genetic engineering and molecular breeding in melon. |
format | Online Article Text |
id | pubmed-10137213 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101372132023-04-28 Genetic Mapping and QTL Analysis of Fruit Traits in Melon (Cucumis melo L.) Zhao, Haiyong Zhang, Taifeng Meng, Xiaobing Song, Jiayan Zhang, Chen Gao, Peng Curr Issues Mol Biol Article Melon (Cucumis melo L.) is an important horticultural cash crop and its quality traits directly affect consumer choice and market price. These traits are controlled by genetic as well as environmental factors. In this study, a quantitative trait locus (QTL) mapping strategy was used to identify the potential genetic loci controlling quality traits of melons (i.e., exocarp and pericarp firmness and soluble solid content) based on newly derived whole-genome single nucleotide polymorphism-based cleaved amplified polymorphic sequence (SNP-CAPS) markers. Specifically, SNPs of two melon varieties, M4-5 and M1-15, as revealed by whole-genome sequencing, were converted to the CAPS markers, which were used to construct a genetic linkage map comprising 12 chromosomes with a total length of 1414.88 cM, in the F(2) population of M4-5 and M1-15. The six identified QTLs included: SSC6.1 and SSC11.1 related to soluble solid content; EF12.1 associated with exocarp firmness; and EPF3.1, EPF3.2 and EPF7.1 related to edible pericarp firmness. These genes were located on five chromosomes (3, 6, 7, 11, and 12) in the flanking regions of the CAPS markers. Moreover, the newly developed CAPS markers will be useful in guiding genetic engineering and molecular breeding in melon. MDPI 2023-04-14 /pmc/articles/PMC10137213/ /pubmed/37185748 http://dx.doi.org/10.3390/cimb45040224 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Haiyong Zhang, Taifeng Meng, Xiaobing Song, Jiayan Zhang, Chen Gao, Peng Genetic Mapping and QTL Analysis of Fruit Traits in Melon (Cucumis melo L.) |
title | Genetic Mapping and QTL Analysis of Fruit Traits in Melon (Cucumis melo L.) |
title_full | Genetic Mapping and QTL Analysis of Fruit Traits in Melon (Cucumis melo L.) |
title_fullStr | Genetic Mapping and QTL Analysis of Fruit Traits in Melon (Cucumis melo L.) |
title_full_unstemmed | Genetic Mapping and QTL Analysis of Fruit Traits in Melon (Cucumis melo L.) |
title_short | Genetic Mapping and QTL Analysis of Fruit Traits in Melon (Cucumis melo L.) |
title_sort | genetic mapping and qtl analysis of fruit traits in melon (cucumis melo l.) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137213/ https://www.ncbi.nlm.nih.gov/pubmed/37185748 http://dx.doi.org/10.3390/cimb45040224 |
work_keys_str_mv | AT zhaohaiyong geneticmappingandqtlanalysisoffruittraitsinmeloncucumismelol AT zhangtaifeng geneticmappingandqtlanalysisoffruittraitsinmeloncucumismelol AT mengxiaobing geneticmappingandqtlanalysisoffruittraitsinmeloncucumismelol AT songjiayan geneticmappingandqtlanalysisoffruittraitsinmeloncucumismelol AT zhangchen geneticmappingandqtlanalysisoffruittraitsinmeloncucumismelol AT gaopeng geneticmappingandqtlanalysisoffruittraitsinmeloncucumismelol |