Cargando…
Automatic Classification of GI Organs in Wireless Capsule Endoscopy Using a No-Code Platform-Based Deep Learning Model
The first step in reading a capsule endoscopy (CE) is determining the gastrointestinal (GI) organ. Because CE produces too many inappropriate and repetitive images, automatic organ classification cannot be directly applied to CE videos. In this study, we developed a deep learning algorithm to classi...
Autores principales: | Chung, Joowon, Oh, Dong Jun, Park, Junseok, Kim, Su Hwan, Lim, Yun Jeong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137357/ https://www.ncbi.nlm.nih.gov/pubmed/37189489 http://dx.doi.org/10.3390/diagnostics13081389 |
Ejemplares similares
-
Efficacy of a comprehensive binary classification model using a deep convolutional neural network for wireless capsule endoscopy
por: Kim, Sang Hoon, et al.
Publicado: (2021) -
Deep Learning and Minimally Invasive Endoscopy: Automatic Classification of Pleomorphic Gastric Lesions in Capsule Endoscopy
por: Mascarenhas, Miguel, et al.
Publicado: (2023) -
A novel capsule endoscopy for upper and mid-GI tract: the UMGI capsule
por: Jiang, Bin, et al.
Publicado: (2023) -
Changes in performance of small bowel capsule endoscopy based on nationwide data from a Korean Capsule Endoscopy Registry
por: Kim, Su Hwan, et al.
Publicado: (2020) -
Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy
por: Nam, Ji Hyung, et al.
Publicado: (2021)