Cargando…
A Second-Order Network Structure Based on Gradient-Enhanced Physics-Informed Neural Networks for Solving Parabolic Partial Differential Equations
Physics-informed neural networks (PINNs) are effective for solving partial differential equations (PDEs). This method of embedding partial differential equations and their initial boundary conditions into the loss functions of neural networks has successfully solved forward and inverse PDE problems....
Autores principales: | Sun, Kuo, Feng, Xinlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137436/ https://www.ncbi.nlm.nih.gov/pubmed/37190465 http://dx.doi.org/10.3390/e25040674 |
Ejemplares similares
-
Physics-Informed Neural Networks for Solving Coupled Stokes–Darcy Equation
por: Pu, Ruilong, et al.
Publicado: (2022) -
Second order equations of elliptic and parabolic type
por: Landis, E M
Publicado: (1997) -
An Analytical Technique, Based on Natural Transform to Solve Fractional-Order Parabolic Equations
por: Agarwal, Ravi P., et al.
Publicado: (2021) -
Wavelets based physics informed neural networks to solve non-linear differential equations
por: Uddin, Ziya, et al.
Publicado: (2023) -
Elliptic partial differential equations of second order
por: Gilbarg, David G, et al.
Publicado: (1977)