Cargando…
Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver
The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subje...
Autores principales: | Su, Pei-Yuan, Chen, Yang-Yuan, Lin, Chun-Yu, Su, Wei-Wen, Huang, Siou-Ping, Yen, Hsu-Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137474/ https://www.ncbi.nlm.nih.gov/pubmed/37189508 http://dx.doi.org/10.3390/diagnostics13081407 |
Ejemplares similares
-
Machine-Learning Algorithm for Predicting Fatty Liver Disease in a Taiwanese Population
por: Chen, Yang-Yuan, et al.
Publicado: (2022) -
Metabolic Dysfunction-Associated Fatty Liver Disease in Taiwanese Patients with Inflammatory Bowel Disease: A Study in Patients with Clinical Remission
por: Hsiao, Shun-Wen, et al.
Publicado: (2023) -
Role of Fatty Liver Index and Metabolic Factors in the Prediction of Nonalcoholic Fatty Liver Disease in a Lean Population Receiving Health Checkup
por: Hsu, Chiao-Lin, et al.
Publicado: (2019) -
Evaluation of non-alcoholic fatty liver disease in patients with inflammatory bowel disease using controlled attenuation parameter technology: A Taiwanese retrospective cohort study
por: Yen, Hsu-Heng, et al.
Publicado: (2021) -
Predictivity of fatty liver index for non-alcoholic fatty liver disease in lean females with polycystic ovary syndrome
por: Arıkan, Didem, et al.
Publicado: (2022)