Cargando…
Information Entropy Measures for Evaluation of Reliability of Deep Neural Network Results
Deep neural networks (DNN) try to analyze given data, to come up with decisions regarding the inputs. The decision-making process of the DNN model is not entirely transparent. The confidence of the model predictions on new data fed into the network can vary. We address the question of certainty of d...
Autores principales: | Gireesh, Elakkat D., Gurupur, Varadaraj P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137523/ https://www.ncbi.nlm.nih.gov/pubmed/37190360 http://dx.doi.org/10.3390/e25040573 |
Ejemplares similares
-
Information Entropy as a Reliable Measure of Nanoparticle
Dispersity
por: Mac Fhionnlaoich, Niamh, et al.
Publicado: (2020) -
Multi-Class Classification of Medical Data Based on Neural Network Pruning and Information-Entropy Measures
por: Sánchez-Gutiérrez, Máximo Eduardo, et al.
Publicado: (2022) -
Maximum entropy methods for extracting the learned features of deep neural networks
por: Finnegan, Alex, et al.
Publicado: (2017) -
Feature and Label Association Based on Granulation Entropy for Deep Neural Networks
por: Bello, Marilyn, et al.
Publicado: (2020) -
Nonreference Image Quality Evaluation Algorithm Based on Wavelet Convolutional Neural Network and Information Entropy
por: Liu, Jinhua, et al.
Publicado: (2019)