Cargando…
Federated Learning Based Fault Diagnosis Driven by Intra-Client Imbalance Degree
Federated learning is an effective means to combine model information from different clients to achieve joint optimization when the model of a single client is insufficient. In the case when there is an inter-client data imbalance, it is significant to design an imbalanced federation aggregation str...
Autores principales: | Zhou, Funa, Yang, Yi, Wang, Chaoge, Hu, Xiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137528/ https://www.ncbi.nlm.nih.gov/pubmed/37190394 http://dx.doi.org/10.3390/e25040606 |
Ejemplares similares
-
Dynamic Semi-Supervised Federated Learning Fault Diagnosis Method Based on an Attention Mechanism
por: Liu, Shun, et al.
Publicado: (2023) -
A Multiscale Recursive Attention Gate Federation Method for Multiple Working Conditions Fault Diagnosis
por: Zhang, Zhiqiang, et al.
Publicado: (2023) -
Trend Feature Consistency Guided Deep Learning Method for Minor Fault Diagnosis
por: Jia, Pengpeng, et al.
Publicado: (2023) -
Transfer Learning Based Fault Diagnosis with Missing Data Due to Multi-Rate Sampling
por: Chen, Danmin, et al.
Publicado: (2019) -
A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
por: Zhou, Funa, et al.
Publicado: (2018)