Cargando…
GL-YOLO-Lite: A Novel Lightweight Fallen Person Detection Model
The detection of a fallen person (FPD) is a crucial task in guaranteeing individual safety. Although deep-learning models have shown potential in addressing this challenge, they face several obstacles, such as the inadequate utilization of global contextual information, poor feature extraction, and...
Autores principales: | Dai, Yuan, Liu, Weiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137530/ https://www.ncbi.nlm.nih.gov/pubmed/37190375 http://dx.doi.org/10.3390/e25040587 |
Ejemplares similares
-
SenseLite: A YOLO-Based Lightweight Model for Small Object Detection in Aerial Imagery
por: Han, Tianxin, et al.
Publicado: (2023) -
Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images
por: Hu, Mengzi, et al.
Publicado: (2023) -
YOLO-SS-Large: A Lightweight and High-Performance Model for Defect Detection in Substations
por: Wang, Qian, et al.
Publicado: (2023) -
YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Selection in Aerial Imagery
por: Betti, Alessandro, et al.
Publicado: (2023) -
YOLO-SCL: a lightweight detection model for citrus psyllid based on spatial channel interaction
por: Lyu, Shilei, et al.
Publicado: (2023)