Cargando…
Relating a System’s Hamiltonian to Its Entropy Production Using a Complex Time Approach
We exploit the properties of complex time to obtain an analytical relationship based on considerations of causality between the two Noether-conserved quantities of a system: its Hamiltonian and its entropy production. In natural units, when complexified, the one is simply the Wick-rotated complex co...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137557/ https://www.ncbi.nlm.nih.gov/pubmed/37190417 http://dx.doi.org/10.3390/e25040629 |
Sumario: | We exploit the properties of complex time to obtain an analytical relationship based on considerations of causality between the two Noether-conserved quantities of a system: its Hamiltonian and its entropy production. In natural units, when complexified, the one is simply the Wick-rotated complex conjugate of the other. A Hilbert transform relation is constructed in the formalism of quantitative geometrical thermodynamics, which enables system irreversibility to be handled analytically within a framework that unifies both the microscopic and macroscopic scales, and which also unifies the treatment of both reversibility and irreversibility as complementary parts of a single physical description. In particular, the thermodynamics of two unitary entities are considered: the alpha particle, which is absolutely stable (that is, trivially reversible with zero entropy production), and a black hole whose unconditional irreversibility is characterized by a non-zero entropy production, for which we show an alternate derivation, confirming our previous one. The thermodynamics of a canonical decaying harmonic oscillator are also considered. In this treatment, the complexification of time also enables a meaningful physical interpretation of both “imaginary time” and “imaginary energy”. |
---|