Cargando…
Empirical Squared Hellinger Distance Estimator and Generalizations to a Family of α-Divergence Estimators
We present an empirical estimator for the squared Hellinger distance between two continuous distributions, which almost surely converges. We show that the divergence estimation problem can be solved directly using the empirical CDF and does not need the intermediate step of estimating the densities....
Autores principales: | Ding, Rui, Mullhaupt, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137612/ https://www.ncbi.nlm.nih.gov/pubmed/37190400 http://dx.doi.org/10.3390/e25040612 |
Ejemplares similares
-
Asymptotic Properties for Methods Combining the Minimum Hellinger Distance Estimate and the Bayesian Nonparametric Density Estimate
por: Wu, Yuefeng, et al.
Publicado: (2018) -
Rare Event Analysis for Minimum Hellinger Distance Estimators via Large Deviation Theory
por: Vidyashankar, Anand N., et al.
Publicado: (2021) -
Hellinger Information Matrix and Hellinger Priors
por: Shemyakin, Arkady
Publicado: (2023) -
Robust Inference after Random Projections via Hellinger Distance for Location-Scale Family
por: Li, Lei, et al.
Publicado: (2019) -
Fine Properties of Geodesics and Geodesic [Formula: see text] -Convexity for the Hellinger–Kantorovich Distance
por: Liero, Matthias, et al.
Publicado: (2023)