Cargando…

Enhancing Hot Air Drying Efficiency through Electrostatic Field–Ultrasonic Coupling Pretreatment

The drying of compact and biologically active materials presents significant challenges. In this study, we propose using electrostatic field–ultrasonic coupling pretreatment to enhance the drying efficiency of ginkgo fruits. We designed and constructed an experimental device to investigate the effec...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Ri-Fu, Peng, Ying-Ying, Wang, Yu-Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137644/
https://www.ncbi.nlm.nih.gov/pubmed/37107522
http://dx.doi.org/10.3390/foods12081727
Descripción
Sumario:The drying of compact and biologically active materials presents significant challenges. In this study, we propose using electrostatic field–ultrasonic coupling pretreatment to enhance the drying efficiency of ginkgo fruits. We designed and constructed an experimental device to investigate the effects of ultrasonic power, pretreatment time, hot air drying temperature, and electrostatic field voltage on the moisture content of the fruits. We used the response surface methodology to identify optimal process conditions and further explored the kinetic model for the moisture content of the fruits under the pretreatment. The results showed that the optimal process parameters for electrostatic–ultrasound pretreatment and the drying of ginkgo fruits were: an electrostatic field voltage of 11.252 kV, an ultrasound power of 590.074 W, a pretreatment time of 32.799 min, and a hot air drying temperature of 85 °C. Under the optimized process conditions, the correlation between the moisture content of ginkgo fruits and the two-term drying kinetics model was the highest. After electrostatic–ultrasound coupling pretreatment, the drying rate of ginkgo fruits was significantly improved during hot air drying.