Cargando…
Optimizing Sparse Testing for Genomic Prediction of Plant Breeding Crops
While sparse testing methods have been proposed by researchers to improve the efficiency of genomic selection (GS) in breeding programs, there are several factors that can hinder this. In this research, we evaluated four methods (M1–M4) for sparse testing allocation of lines to environments under mu...
Autores principales: | Montesinos-López, Osval A., Saint Pierre, Carolina, Gezan, Salvador A., Bentley, Alison R., Mosqueda-González, Brandon A., Montesinos-López, Abelardo, van Eeuwijk, Fred, Beyene, Yoseph, Gowda, Manje, Gardner, Keith, Gerard, Guillermo S., Crespo-Herrera, Leonardo, Crossa, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137724/ https://www.ncbi.nlm.nih.gov/pubmed/37107685 http://dx.doi.org/10.3390/genes14040927 |
Ejemplares similares
-
A General-Purpose Machine Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction
por: Montesinos López, Osval Antonio, et al.
Publicado: (2022) -
A New Deep Learning Calibration Method Enhances Genome-Based Prediction of Continuous Crop Traits
por: Montesinos-López, Osval A., et al.
Publicado: (2021) -
Statistical Machine-Learning Methods for Genomic Prediction Using the SKM Library
por: Montesinos López, Osval A., et al.
Publicado: (2023) -
Multi-trait genomic-enabled prediction enhances accuracy in multi-year wheat breeding trials
por: Montesinos-López, Abelardo, et al.
Publicado: (2021) -
The Modern Plant Breeding Triangle: Optimizing the Use of Genomics, Phenomics, and Enviromics Data
por: Crossa, Jose, et al.
Publicado: (2021)