Cargando…

Structured Cluster Detection from Local Feature Learning for Text Region Extraction

The detection of regions of interest is commonly considered as an early stage of information extraction from images. It is used to provide the contents meaningful to human perception for machine vision applications. In this work, a new technique for structured region detection based on the distillat...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Huei-Yung, Hsu, Chin-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137775/
https://www.ncbi.nlm.nih.gov/pubmed/37190448
http://dx.doi.org/10.3390/e25040658
Descripción
Sumario:The detection of regions of interest is commonly considered as an early stage of information extraction from images. It is used to provide the contents meaningful to human perception for machine vision applications. In this work, a new technique for structured region detection based on the distillation of local image features with clustering analysis is proposed. Different from the existing methods, our approach takes the application-specific reference images for feature learning and extraction. It is able to identify text clusters under the sparsity of feature points derived from the characters. For the localization of structured regions, the cluster with high feature density is calculated and serves as a candidate for region expansion. An iterative adjustment is then performed to enlarge the ROI for complete text coverage. The experiments carried out for text region detection of invoice and banknote demonstrate the effectiveness of the proposed technique.