Cargando…

Encryption of Color Images with an Evolutionary Framework Controlled by Chaotic Systems

In the past decade, a large amount of important digital data has been created and stored in the form of color images; the protection of such data from undesirable accesses has become an important problem in information security. In this paper, a new approach based on an evolutionary framework is pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Man, Xinpeng, Song, Yinglei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137794/
https://www.ncbi.nlm.nih.gov/pubmed/37190419
http://dx.doi.org/10.3390/e25040631
Descripción
Sumario:In the past decade, a large amount of important digital data has been created and stored in the form of color images; the protection of such data from undesirable accesses has become an important problem in information security. In this paper, a new approach based on an evolutionary framework is proposed for the secure encryption of color images. The image contents in a color image are first fully scrambled with a sequence of bit-level operations determined by a number of integer keys. A scrambled image is then encrypted with keys generated from an evolutionary process controlled by a set of chaotic systems. Analysis and experiments show that the proposed approach can generate encrypted color images with high security. In addition, the performance of the proposed approach is compared with that of a few state-of-the-art approaches for color image encryption. The results of the comparison suggest that the proposed approach outperforms the other approaches in the overall security of encrypted images. The proposed approach is thus potentially useful for applications that require color image encryption.