Cargando…
NAMSTCD: A Novel Augmented Model for Spinal Cord Segmentation and Tumor Classification Using Deep Nets
Spinal cord segmentation is the process of identifying and delineating the boundaries of the spinal cord in medical images such as magnetic resonance imaging (MRI) or computed tomography (CT) scans. This process is important for many medical applications, including the diagnosis, treatment planning,...
Autores principales: | Mohanty, Ricky, Allabun, Sarah, Solanki, Sandeep Singh, Pani, Subhendu Kumar, Alqahtani, Mohammed S., Abbas, Mohamed, Soufiene, Ben Othman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137872/ https://www.ncbi.nlm.nih.gov/pubmed/37189520 http://dx.doi.org/10.3390/diagnostics13081417 |
Ejemplares similares
-
Enhanced brain tumor classification using graph convolutional neural network architecture
por: Ravinder, M., et al.
Publicado: (2023) -
Multimodal hybrid convolutional neural network based brain tumor grade classification
por: Rohini, A., et al.
Publicado: (2023) -
Ride comfort and segmental vibration transmissibility analysis of an automobile passenger model under whole body vibration
por: Guruguntla, Veeresalingam, et al.
Publicado: (2023) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Transfer learning for accurate fetal organ classification from ultrasound images: a potential tool for maternal healthcare providers
por: Ghabri, Haifa, et al.
Publicado: (2023)