Cargando…
Scaling Up Q-Learning via Exploiting State–Action Equivalence
Recent success stories in reinforcement learning have demonstrated that leveraging structural properties of the underlying environment is key in devising viable methods capable of solving complex tasks. We study off-policy learning in discounted reinforcement learning, where some equivalence relatio...
Autores principales: | Lyu, Yunlian, Côme, Aymeric, Zhang, Yijie, Talebi, Mohammad Sadegh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137898/ https://www.ncbi.nlm.nih.gov/pubmed/37190372 http://dx.doi.org/10.3390/e25040584 |
Ejemplares similares
-
Exploiting Semantic Annotations and Q-Learning for Constructing an Efficient Hierarchy/Graph Texts Organization
por: El-Said, Asmaa M., et al.
Publicado: (2015) -
A quantum mechanical system equivalent to Q.E.D.
por: Mackman, S
Publicado: (1995) -
Learning hybrid locomotion skills—Learn to exploit residual actions and modulate model-based gait control
por: Kasaei, Mohammadreza, et al.
Publicado: (2023) -
Equivalence of Dirac quantization and Schwinger's action principle quantization
por: Das, A, et al.
Publicado: (1987) -
Optimal Tracking Control of a Nonlinear Multiagent System Using Q-Learning via Event-Triggered Reinforcement Learning
por: Wang, Ziwei, et al.
Publicado: (2023)