Cargando…
Square Root Convexity of Fisher Information along Heat Flow in Dimension Two
Recently, Ledoux, Nair, and Wang proved that the Fisher information along the heat flow is log-convex in dimension one, that is [Formula: see text] for [Formula: see text] , where [Formula: see text] is a random variable with density function satisfying the heat equation. In this paper, we consider...
Autores principales: | Liu, Junliang, Gao, Xiaoshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137932/ https://www.ncbi.nlm.nih.gov/pubmed/37190344 http://dx.doi.org/10.3390/e25040558 |
Ejemplares similares
-
Convexity and optimization in finite dimensions
por: Stoer, Josef, et al.
Publicado: (1970) -
Fisher’s exact approach for post hoc analysis of a chi-squared test
por: Shan, Guogen, et al.
Publicado: (2017) -
Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test
por: Kim, Hae-Young
Publicado: (2017) -
Discrete Versions of Jensen–Fisher, Fisher and Bayes–Fisher Information Measures of Finite Mixture Distributions
por: Kharazmi, Omid, et al.
Publicado: (2021) -
Delivering Sound Energy along an Arbitrary Convex Trajectory
por: Zhao, Sipei, et al.
Publicado: (2014)