Cargando…
On the Lift, Related Privacy Measures, and Applications to Privacy–Utility Trade-Offs †
This paper investigates lift, the likelihood ratio between the posterior and prior belief about sensitive features in a dataset. Maximum and minimum lifts over sensitive features quantify the adversary’s knowledge gain and should be bounded to protect privacy. We demonstrate that max- and min-lifts...
Autores principales: | Zarrabian, Mohammad Amin, Ding, Ni, Sadeghi, Parastoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137968/ https://www.ncbi.nlm.nih.gov/pubmed/37190467 http://dx.doi.org/10.3390/e25040679 |
Ejemplares similares
-
Utility–Privacy Trade-Offs with Limited Leakage for Encoder
por: Shinohara, Naruki, et al.
Publicado: (2023) -
Utility–Privacy Trade-Off in Distributed Machine Learning Systems
por: Zeng, Xia, et al.
Publicado: (2022) -
A secure location-based alert system with tunable privacy-performance trade-off
por: Ghinita, Gabriel, et al.
Publicado: (2020) -
Privacy Protection and Data Utilization
por: Shin, Soo-Yong
Publicado: (2021) -
ON THE PRIVACY AND UTILITY PROPERTIES OF TRIPLE MATRIX-MASKING
por: DING, A. ADAM, et al.
Publicado: (2020)