Cargando…
Deep Learning Empowers Endoscopic Detection and Polyps Classification: A Multiple-Hospital Study
The present study aimed to develop an AI-based system for the detection and classification of polyps using colonoscopy images. A total of about 256,220 colonoscopy images from 5000 colorectal cancer patients were collected and processed. We used the CNN model for polyp detection and the EfficientNet...
Autores principales: | Shen, Ming-Hung, Huang, Chi-Cheng, Chen, Yu-Tsung, Tsai, Yi-Jian, Liou, Fou-Ming, Chang, Shih-Chang, Phan, Nam Nhut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138002/ https://www.ncbi.nlm.nih.gov/pubmed/37189575 http://dx.doi.org/10.3390/diagnostics13081473 |
Ejemplares similares
-
Colorectal Polyp Image Detection and Classification through Grayscale Images and Deep Learning
por: Hsu, Chen-Ming, et al.
Publicado: (2021) -
A Deep Learning Model for Classification of Endoscopic Gastroesophageal Reflux Disease
por: Wang, Chi-Chih, et al.
Publicado: (2021) -
An Improved Endoscopic Automatic Classification Model for Gastroesophageal Reflux Disease Using Deep Learning Integrated Machine Learning
por: Yen, Hsu-Heng, et al.
Publicado: (2022) -
Predicting Breast Cancer Gene Expression Signature by Applying Deep Convolutional Neural Networks From Unannotated Pathological Images
por: Phan, Nam Nhut, et al.
Publicado: (2021) -
Linked-color imaging combined with the NICE classification system for optical diagnosis of colon polyps: new image-enhanced endoscopic technology for pathological prediction
por: Wu, Chi-Huan, et al.
Publicado: (2017)