Cargando…
Butterfly Transforms for Efficient Representation of Spatially Variant Point Spread Functions in Bayesian Imaging
Bayesian imaging algorithms are becoming increasingly important in, e.g., astronomy, medicine and biology. Given that many of these algorithms compute iterative solutions to high-dimensional inverse problems, the efficiency and accuracy of the instrument response representation are of high importanc...
Autores principales: | Eberle, Vincent, Frank, Philipp, Stadler, Julia, Streit, Silvan, Enßlin, Torsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138018/ https://www.ncbi.nlm.nih.gov/pubmed/37190440 http://dx.doi.org/10.3390/e25040652 |
Ejemplares similares
-
A Bayesian Model for Bivariate Causal Inference
por: Kurthen, Maximilian, et al.
Publicado: (2019) -
Bayesian Reasoning with Trained Neural Networks
por: Knollmüller, Jakob, et al.
Publicado: (2021) -
Neural representation of goal direction in the monarch butterfly brain
por: Beetz, M. Jerome, et al.
Publicado: (2023) -
Causal, Bayesian, & non-parametric modeling of the SARS-CoV-2 viral load distribution vs. patient’s age
por: Guardiani, Matteo, et al.
Publicado: (2022) -
A flexible and efficient Bayesian implementation of point process models for spatial capture–recapture data
por: Zhang, Wei, et al.
Publicado: (2022)