Cargando…
Semi-Supervised KPCA-Based Monitoring Techniques for Detecting COVID-19 Infection through Blood Tests
This study introduces a new method for identifying COVID-19 infections using blood test data as part of an anomaly detection problem by combining the kernel principal component analysis (KPCA) and one-class support vector machine (OCSVM). This approach aims to differentiate healthy individuals from...
Autores principales: | Harrou, Fouzi, Dairi, Abdelkader, Dorbane, Abdelhakim, Kadri, Farid, Sun, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138088/ https://www.ncbi.nlm.nih.gov/pubmed/37189568 http://dx.doi.org/10.3390/diagnostics13081466 |
Ejemplares similares
-
Forecasting emergency department overcrowding: A deep learning framework
por: Harrou, Fouzi, et al.
Publicado: (2020) -
Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework
por: Kadri, Farid, et al.
Publicado: (2022) -
Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study
por: Zeroual, Abdelhafid, et al.
Publicado: (2020) -
EEG-Based Mental Tasks Recognition via a Deep Learning-Driven Anomaly Detector
por: Dairi, Abdelkader, et al.
Publicado: (2022) -
Comparative study of machine learning methods for COVID-19 transmission forecasting
por: Dairi, Abdelkader, et al.
Publicado: (2021)