Cargando…

Directly Filtering the Sparse-View CT Images by BM3D

The x-ray Computed Tomography (CT) images with sparse-view data acquisition contain severe angular aliasing artifacts. The common denoising filters do not work well if they are used to reduce the artifacts. The state-of-the-art methods to process the sparse-view CT images are deep-learning based; th...

Descripción completa

Detalles Bibliográficos
Autor principal: Zeng, Gengsheng L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138108/
https://www.ncbi.nlm.nih.gov/pubmed/37126466
_version_ 1785032628644085760
author Zeng, Gengsheng L
author_facet Zeng, Gengsheng L
author_sort Zeng, Gengsheng L
collection PubMed
description The x-ray Computed Tomography (CT) images with sparse-view data acquisition contain severe angular aliasing artifacts. The common denoising filters do not work well if they are used to reduce the artifacts. The state-of-the-art methods to process the sparse-view CT images are deep-learning based; they require a large amount of training data pairs. This paper considers a situation where no clinical training data sets are available. All we have is one sparse scan of a patient. This paper attempts to use a BM3D filter to reduce the artifacts by using an artifact power spectral density function, which is calculated with computer simulations. The results in this paper show that the proposed method is promising in computer simulations. The proposed method has been applied to patient data, and we observe that the sparse-view artifacts are reduced, especially in the central region of the image, but the artifact reduction is not as effective at the peripheral if the control parameter in the BM3D filter is not properly chosen.
format Online
Article
Text
id pubmed-10138108
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-101381082023-04-27 Directly Filtering the Sparse-View CT Images by BM3D Zeng, Gengsheng L SL Clin Med Article The x-ray Computed Tomography (CT) images with sparse-view data acquisition contain severe angular aliasing artifacts. The common denoising filters do not work well if they are used to reduce the artifacts. The state-of-the-art methods to process the sparse-view CT images are deep-learning based; they require a large amount of training data pairs. This paper considers a situation where no clinical training data sets are available. All we have is one sparse scan of a patient. This paper attempts to use a BM3D filter to reduce the artifacts by using an artifact power spectral density function, which is calculated with computer simulations. The results in this paper show that the proposed method is promising in computer simulations. The proposed method has been applied to patient data, and we observe that the sparse-view artifacts are reduced, especially in the central region of the image, but the artifact reduction is not as effective at the peripheral if the control parameter in the BM3D filter is not properly chosen. 2022 2022-10-07 /pmc/articles/PMC10138108/ /pubmed/37126466 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Article
Zeng, Gengsheng L
Directly Filtering the Sparse-View CT Images by BM3D
title Directly Filtering the Sparse-View CT Images by BM3D
title_full Directly Filtering the Sparse-View CT Images by BM3D
title_fullStr Directly Filtering the Sparse-View CT Images by BM3D
title_full_unstemmed Directly Filtering the Sparse-View CT Images by BM3D
title_short Directly Filtering the Sparse-View CT Images by BM3D
title_sort directly filtering the sparse-view ct images by bm3d
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138108/
https://www.ncbi.nlm.nih.gov/pubmed/37126466
work_keys_str_mv AT zenggengshengl directlyfilteringthesparseviewctimagesbybm3d