Cargando…

Quantum–Classical Hybrid Systems and Ehrenfest’s Theorem

The conceptual analysis of quantum mechanics brings to light that a theory inherently consistent with observations should be able to describe both quantum and classical systems, i.e., quantum–classical hybrids. For example, the orthodox interpretation of measurements requires the transient creation...

Descripción completa

Detalles Bibliográficos
Autores principales: Sergi, Alessandro, Lamberto, Daniele, Migliore, Agostino, Messina, Antonino
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138123/
https://www.ncbi.nlm.nih.gov/pubmed/37190388
http://dx.doi.org/10.3390/e25040602
Descripción
Sumario:The conceptual analysis of quantum mechanics brings to light that a theory inherently consistent with observations should be able to describe both quantum and classical systems, i.e., quantum–classical hybrids. For example, the orthodox interpretation of measurements requires the transient creation of quantum–classical hybrids. Despite its limitations in defining the classical limit, Ehrenfest’s theorem makes the simplest contact between quantum and classical mechanics. Here, we generalized the Ehrenfest theorem to bipartite quantum systems. To study quantum–classical hybrids, we employed a formalism based on operator-valued Wigner functions and quantum–classical brackets. We used this approach to derive the form of the Ehrenfest theorem for quantum–classical hybrids. We found that the time variation of the average energy of each component of the bipartite system is equal to the average of the symmetrized quantum dissipated power in both the quantum and the quantum–classical case. We expect that these theoretical results will be useful both to analyze quantum–classical hybrids and to develop self-consistent numerical algorithms for Ehrenfest-type simulations.