Cargando…
Graph Autoencoder with Preserving Node Attribute Similarity
The graph autoencoder (GAE) is a powerful graph representation learning tool in an unsupervised learning manner for graph data. However, most existing GAE-based methods typically focus on preserving the graph topological structure by reconstructing the adjacency matrix while ignoring the preservatio...
Autores principales: | Lin, Mugang, Wen, Kunhui, Zhu, Xuanying, Zhao, Huihuang, Sun, Xianfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138145/ https://www.ncbi.nlm.nih.gov/pubmed/37190356 http://dx.doi.org/10.3390/e25040567 |
Ejemplares similares
-
Node embedding-based graph autoencoder outlier detection for adverse pregnancy outcomes
por: Khan, Wasif, et al.
Publicado: (2023) -
GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning
por: Ha, Jun Seo, et al.
Publicado: (2023) -
Robust Attribute and Structure Preserving Graph Embedding
por: Hettige, Bhagya, et al.
Publicado: (2020) -
Scalably Using Node Attributes and Graph Structure for Node Classification †
por: Merchant, Arpit, et al.
Publicado: (2022) -
Representation Learning: Recommendation With Knowledge Graph via Triple-Autoencoder
por: Geng, Yishuai, et al.
Publicado: (2022)