Cargando…
A Method Based on Temporal Embedding for the Pairwise Alignment of Dynamic Networks
In network analysis, real-world systems may be represented via graph models, where nodes and edges represent the set of biological objects (e.g., genes, proteins, molecules) and their interactions, respectively. This representative knowledge-graph model may also consider the dynamics involved in the...
Autores principales: | Cinaglia, Pietro, Cannataro, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138164/ https://www.ncbi.nlm.nih.gov/pubmed/37190452 http://dx.doi.org/10.3390/e25040665 |
Ejemplares similares
-
Multilayer network alignment based on topological assessment via embeddings
por: Cinaglia, Pietro, et al.
Publicado: (2023) -
Aligning Cross-Species Interactomes for Studying Complex and Chronic Diseases
por: Milano, Marianna, et al.
Publicado: (2023) -
Forecasting COVID-19 Epidemic Trends by Combining a Neural Network with R(t) Estimation
por: Cinaglia, Pietro, et al.
Publicado: (2022) -
Identifying Candidate Gene–Disease Associations via Graph Neural Networks
por: Cinaglia, Pietro, et al.
Publicado: (2023) -
An Extensive Assessment of Network Embedding in PPI Network Alignment
por: Milano, Marianna, et al.
Publicado: (2022)