Cargando…

Generation of Pseudo-Random Quantum States on Actual Quantum Processors

The generation of a large amount of entanglement is a necessary condition for a quantum computer to achieve quantum advantage. In this paper, we propose a method to efficiently generate pseudo-random quantum states, for which the degree of multipartite entanglement is nearly maximal. We argue that t...

Descripción completa

Detalles Bibliográficos
Autores principales: Cenedese, Gabriele, Bondani, Maria, Rosa, Dario, Benenti, Giuliano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138170/
https://www.ncbi.nlm.nih.gov/pubmed/37190395
http://dx.doi.org/10.3390/e25040607
Descripción
Sumario:The generation of a large amount of entanglement is a necessary condition for a quantum computer to achieve quantum advantage. In this paper, we propose a method to efficiently generate pseudo-random quantum states, for which the degree of multipartite entanglement is nearly maximal. We argue that the method is optimal, and use it to benchmark actual superconducting (IBM’s ibm_lagos) and ion trap (IonQ’s Harmony) quantum processors. Despite the fact that ibm_lagos has lower single-qubit and two-qubit error rates, the overall performance of Harmony is better thanks to its low error rate in state preparation and measurement and to the all-to-all connectivity of qubits. Our result highlights the relevance of the qubits network architecture to generate highly entangled states.