Cargando…

Generation of Pseudo-Random Quantum States on Actual Quantum Processors

The generation of a large amount of entanglement is a necessary condition for a quantum computer to achieve quantum advantage. In this paper, we propose a method to efficiently generate pseudo-random quantum states, for which the degree of multipartite entanglement is nearly maximal. We argue that t...

Descripción completa

Detalles Bibliográficos
Autores principales: Cenedese, Gabriele, Bondani, Maria, Rosa, Dario, Benenti, Giuliano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138170/
https://www.ncbi.nlm.nih.gov/pubmed/37190395
http://dx.doi.org/10.3390/e25040607
_version_ 1785032643371335680
author Cenedese, Gabriele
Bondani, Maria
Rosa, Dario
Benenti, Giuliano
author_facet Cenedese, Gabriele
Bondani, Maria
Rosa, Dario
Benenti, Giuliano
author_sort Cenedese, Gabriele
collection PubMed
description The generation of a large amount of entanglement is a necessary condition for a quantum computer to achieve quantum advantage. In this paper, we propose a method to efficiently generate pseudo-random quantum states, for which the degree of multipartite entanglement is nearly maximal. We argue that the method is optimal, and use it to benchmark actual superconducting (IBM’s ibm_lagos) and ion trap (IonQ’s Harmony) quantum processors. Despite the fact that ibm_lagos has lower single-qubit and two-qubit error rates, the overall performance of Harmony is better thanks to its low error rate in state preparation and measurement and to the all-to-all connectivity of qubits. Our result highlights the relevance of the qubits network architecture to generate highly entangled states.
format Online
Article
Text
id pubmed-10138170
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101381702023-04-28 Generation of Pseudo-Random Quantum States on Actual Quantum Processors Cenedese, Gabriele Bondani, Maria Rosa, Dario Benenti, Giuliano Entropy (Basel) Article The generation of a large amount of entanglement is a necessary condition for a quantum computer to achieve quantum advantage. In this paper, we propose a method to efficiently generate pseudo-random quantum states, for which the degree of multipartite entanglement is nearly maximal. We argue that the method is optimal, and use it to benchmark actual superconducting (IBM’s ibm_lagos) and ion trap (IonQ’s Harmony) quantum processors. Despite the fact that ibm_lagos has lower single-qubit and two-qubit error rates, the overall performance of Harmony is better thanks to its low error rate in state preparation and measurement and to the all-to-all connectivity of qubits. Our result highlights the relevance of the qubits network architecture to generate highly entangled states. MDPI 2023-04-03 /pmc/articles/PMC10138170/ /pubmed/37190395 http://dx.doi.org/10.3390/e25040607 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cenedese, Gabriele
Bondani, Maria
Rosa, Dario
Benenti, Giuliano
Generation of Pseudo-Random Quantum States on Actual Quantum Processors
title Generation of Pseudo-Random Quantum States on Actual Quantum Processors
title_full Generation of Pseudo-Random Quantum States on Actual Quantum Processors
title_fullStr Generation of Pseudo-Random Quantum States on Actual Quantum Processors
title_full_unstemmed Generation of Pseudo-Random Quantum States on Actual Quantum Processors
title_short Generation of Pseudo-Random Quantum States on Actual Quantum Processors
title_sort generation of pseudo-random quantum states on actual quantum processors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138170/
https://www.ncbi.nlm.nih.gov/pubmed/37190395
http://dx.doi.org/10.3390/e25040607
work_keys_str_mv AT cenedesegabriele generationofpseudorandomquantumstatesonactualquantumprocessors
AT bondanimaria generationofpseudorandomquantumstatesonactualquantumprocessors
AT rosadario generationofpseudorandomquantumstatesonactualquantumprocessors
AT benentigiuliano generationofpseudorandomquantumstatesonactualquantumprocessors