Cargando…

Improved Physics-Informed Neural Networks Combined with Small Sample Learning to Solve Two-Dimensional Stefan Problem

With the remarkable development of deep learning in the field of science, deep neural networks provide a new way to solve the Stefan problem. In this paper, deep neural networks combined with small sample learning and a general deep learning framework are proposed to solve the two-dimensional Stefan...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jiawei, Wu, Wei, Feng, Xinlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138182/
https://www.ncbi.nlm.nih.gov/pubmed/37190462
http://dx.doi.org/10.3390/e25040675
Descripción
Sumario:With the remarkable development of deep learning in the field of science, deep neural networks provide a new way to solve the Stefan problem. In this paper, deep neural networks combined with small sample learning and a general deep learning framework are proposed to solve the two-dimensional Stefan problem. In the case of adding less sample data, the model can be modified and the prediction accuracy can be improved. In addition, by solving the forward and inverse problems of the two-dimensional single-phase Stefan problem, it is verified that the improved method can accurately predict the solutions of the partial differential equations of the moving boundary and the dynamic interface.