Cargando…
A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments
Periplasmic nanowires and electric conductive filaments made of the polymeric assembly of c-type cytochromes from Geobacter sulfurreducens bacterium are crucial for electron storage and/or extracellular electron transfer. The elucidation of the redox properties of each heme is fundamental to the und...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138318/ https://www.ncbi.nlm.nih.gov/pubmed/37108196 http://dx.doi.org/10.3390/ijms24087032 |
_version_ | 1785032678514360320 |
---|---|
author | Silva, Marta A. Fernandes, Ana P. Turner, David L. Salgueiro, Carlos A. |
author_facet | Silva, Marta A. Fernandes, Ana P. Turner, David L. Salgueiro, Carlos A. |
author_sort | Silva, Marta A. |
collection | PubMed |
description | Periplasmic nanowires and electric conductive filaments made of the polymeric assembly of c-type cytochromes from Geobacter sulfurreducens bacterium are crucial for electron storage and/or extracellular electron transfer. The elucidation of the redox properties of each heme is fundamental to the understanding of the electron transfer mechanisms in these systems, which first requires the specific assignment of the heme NMR signals. The high number of hemes and the molecular weight of the nanowires dramatically decrease the spectral resolution and make this assignment extremely complex or unattainable. The nanowire cytochrome GSU1996 (~42 kDa) is composed of four domains (A to D) each containing three c-type heme groups. In this work, the individual domains (A to D), bi-domains (AB, CD) and full-length nanowire were separately produced at natural abundance. Sufficient protein expression was obtained for domains C (~11 kDa/three hemes) and D (~10 kDa/three hemes), as well as for bi-domain CD (~21 kDa/six hemes). Using 2D-NMR experiments, the assignment of the heme proton NMR signals for domains C and D was obtained and then used to guide the assignment of the corresponding signals in the hexaheme bi-domain CD. This new biochemical deconstruction-based procedure, using nanowire GSU1996 as a model, establishes a new strategy to functionally characterize large multiheme cytochromes. |
format | Online Article Text |
id | pubmed-10138318 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101383182023-04-28 A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments Silva, Marta A. Fernandes, Ana P. Turner, David L. Salgueiro, Carlos A. Int J Mol Sci Article Periplasmic nanowires and electric conductive filaments made of the polymeric assembly of c-type cytochromes from Geobacter sulfurreducens bacterium are crucial for electron storage and/or extracellular electron transfer. The elucidation of the redox properties of each heme is fundamental to the understanding of the electron transfer mechanisms in these systems, which first requires the specific assignment of the heme NMR signals. The high number of hemes and the molecular weight of the nanowires dramatically decrease the spectral resolution and make this assignment extremely complex or unattainable. The nanowire cytochrome GSU1996 (~42 kDa) is composed of four domains (A to D) each containing three c-type heme groups. In this work, the individual domains (A to D), bi-domains (AB, CD) and full-length nanowire were separately produced at natural abundance. Sufficient protein expression was obtained for domains C (~11 kDa/three hemes) and D (~10 kDa/three hemes), as well as for bi-domain CD (~21 kDa/six hemes). Using 2D-NMR experiments, the assignment of the heme proton NMR signals for domains C and D was obtained and then used to guide the assignment of the corresponding signals in the hexaheme bi-domain CD. This new biochemical deconstruction-based procedure, using nanowire GSU1996 as a model, establishes a new strategy to functionally characterize large multiheme cytochromes. MDPI 2023-04-11 /pmc/articles/PMC10138318/ /pubmed/37108196 http://dx.doi.org/10.3390/ijms24087032 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Silva, Marta A. Fernandes, Ana P. Turner, David L. Salgueiro, Carlos A. A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments |
title | A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments |
title_full | A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments |
title_fullStr | A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments |
title_full_unstemmed | A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments |
title_short | A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments |
title_sort | biochemical deconstruction-based strategy to assist the characterization of bacterial electric conductive filaments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138318/ https://www.ncbi.nlm.nih.gov/pubmed/37108196 http://dx.doi.org/10.3390/ijms24087032 |
work_keys_str_mv | AT silvamartaa abiochemicaldeconstructionbasedstrategytoassistthecharacterizationofbacterialelectricconductivefilaments AT fernandesanap abiochemicaldeconstructionbasedstrategytoassistthecharacterizationofbacterialelectricconductivefilaments AT turnerdavidl abiochemicaldeconstructionbasedstrategytoassistthecharacterizationofbacterialelectricconductivefilaments AT salgueirocarlosa abiochemicaldeconstructionbasedstrategytoassistthecharacterizationofbacterialelectricconductivefilaments AT silvamartaa biochemicaldeconstructionbasedstrategytoassistthecharacterizationofbacterialelectricconductivefilaments AT fernandesanap biochemicaldeconstructionbasedstrategytoassistthecharacterizationofbacterialelectricconductivefilaments AT turnerdavidl biochemicaldeconstructionbasedstrategytoassistthecharacterizationofbacterialelectricconductivefilaments AT salgueirocarlosa biochemicaldeconstructionbasedstrategytoassistthecharacterizationofbacterialelectricconductivefilaments |