Cargando…
Targeting the I7L Protease: A Rational Design for Anti-Monkeypox Drugs?
The latest monkeypox virus outbreak in 2022 showcased the potential threat of this viral zoonosis to public health. The lack of specific treatments against this infection and the success of viral protease inhibitors-based treatments against HIV, Hepatitis C, and SARS-CoV-2, brought the monkeypox vir...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138331/ https://www.ncbi.nlm.nih.gov/pubmed/37108279 http://dx.doi.org/10.3390/ijms24087119 |
_version_ | 1785032681444081664 |
---|---|
author | Dodaro, Andrea Pavan, Matteo Moro, Stefano |
author_facet | Dodaro, Andrea Pavan, Matteo Moro, Stefano |
author_sort | Dodaro, Andrea |
collection | PubMed |
description | The latest monkeypox virus outbreak in 2022 showcased the potential threat of this viral zoonosis to public health. The lack of specific treatments against this infection and the success of viral protease inhibitors-based treatments against HIV, Hepatitis C, and SARS-CoV-2, brought the monkeypox virus I7L protease under the spotlight as a potential target for the development of specific and compelling drugs against this emerging disease. In the present work, the structure of the monkeypox virus I7L protease was modeled and thoroughly characterized through a dedicated computational study. Furthermore, structural information gathered in the first part of the study was exploited to virtually screen the DrugBank database, consisting of drugs approved by the Food and Drug Administration (FDA) and clinical-stage drug candidates, in search for readily repurposable compounds with similar binding features as TTP-6171, the only non-covalent I7L protease inhibitor reported in the literature. The virtual screening resulted in the identification of 14 potential inhibitors of the monkeypox I7L protease. Finally, based on data collected within the present work, some considerations on developing allosteric modulators of the I7L protease are reported. |
format | Online Article Text |
id | pubmed-10138331 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101383312023-04-28 Targeting the I7L Protease: A Rational Design for Anti-Monkeypox Drugs? Dodaro, Andrea Pavan, Matteo Moro, Stefano Int J Mol Sci Article The latest monkeypox virus outbreak in 2022 showcased the potential threat of this viral zoonosis to public health. The lack of specific treatments against this infection and the success of viral protease inhibitors-based treatments against HIV, Hepatitis C, and SARS-CoV-2, brought the monkeypox virus I7L protease under the spotlight as a potential target for the development of specific and compelling drugs against this emerging disease. In the present work, the structure of the monkeypox virus I7L protease was modeled and thoroughly characterized through a dedicated computational study. Furthermore, structural information gathered in the first part of the study was exploited to virtually screen the DrugBank database, consisting of drugs approved by the Food and Drug Administration (FDA) and clinical-stage drug candidates, in search for readily repurposable compounds with similar binding features as TTP-6171, the only non-covalent I7L protease inhibitor reported in the literature. The virtual screening resulted in the identification of 14 potential inhibitors of the monkeypox I7L protease. Finally, based on data collected within the present work, some considerations on developing allosteric modulators of the I7L protease are reported. MDPI 2023-04-12 /pmc/articles/PMC10138331/ /pubmed/37108279 http://dx.doi.org/10.3390/ijms24087119 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dodaro, Andrea Pavan, Matteo Moro, Stefano Targeting the I7L Protease: A Rational Design for Anti-Monkeypox Drugs? |
title | Targeting the I7L Protease: A Rational Design for Anti-Monkeypox Drugs? |
title_full | Targeting the I7L Protease: A Rational Design for Anti-Monkeypox Drugs? |
title_fullStr | Targeting the I7L Protease: A Rational Design for Anti-Monkeypox Drugs? |
title_full_unstemmed | Targeting the I7L Protease: A Rational Design for Anti-Monkeypox Drugs? |
title_short | Targeting the I7L Protease: A Rational Design for Anti-Monkeypox Drugs? |
title_sort | targeting the i7l protease: a rational design for anti-monkeypox drugs? |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138331/ https://www.ncbi.nlm.nih.gov/pubmed/37108279 http://dx.doi.org/10.3390/ijms24087119 |
work_keys_str_mv | AT dodaroandrea targetingthei7lproteasearationaldesignforantimonkeypoxdrugs AT pavanmatteo targetingthei7lproteasearationaldesignforantimonkeypoxdrugs AT morostefano targetingthei7lproteasearationaldesignforantimonkeypoxdrugs |