Cargando…
Bacterial Species from Vaginal Microbiota Differently Affect the Production of the E6 and E7 Oncoproteins and of p53 and p-Rb Oncosuppressors in HPV16-Infected Cells
Vaginal dysbiosis is characterized by a decrease in the relative abundance of Lactobacillus species in favor of other species. This condition facilitates infections by sexually transmitted pathogens including high risk (HR)-human papilloma viruses (HPVs) involved in the development of cervical cance...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138431/ https://www.ncbi.nlm.nih.gov/pubmed/37108333 http://dx.doi.org/10.3390/ijms24087173 |
_version_ | 1785032705083179008 |
---|---|
author | Nicolò, Sabrina Antonelli, Alberto Tanturli, Michele Baccani, Ilaria Bonaiuto, Chiara Castronovo, Giuseppe Rossolini, Gian Maria Mattiuz, G. Torcia, M. G. |
author_facet | Nicolò, Sabrina Antonelli, Alberto Tanturli, Michele Baccani, Ilaria Bonaiuto, Chiara Castronovo, Giuseppe Rossolini, Gian Maria Mattiuz, G. Torcia, M. G. |
author_sort | Nicolò, Sabrina |
collection | PubMed |
description | Vaginal dysbiosis is characterized by a decrease in the relative abundance of Lactobacillus species in favor of other species. This condition facilitates infections by sexually transmitted pathogens including high risk (HR)-human papilloma viruses (HPVs) involved in the development of cervical cancer. Some vaginal dysbiosis bacteria contribute to the neoplastic progression by inducing chronic inflammation and directly activating molecular pathways involved in carcinogenesis. In this study, SiHa cells, an HPV-16-transformed epithelial cell line, were exposed to different representative vaginal microbial communities. The expression of the HPV oncogenes E6 and E7 and the production of relative oncoproteins was evaluated. The results showed that Lactobacillus crispatus and Lactobacillus gasseri modulated the basal expression of the E6 and E7 genes of SiHa cells and the production of the E6 and E7 oncoproteins. Vaginal dysbiosis bacteria had contrasting effects on E6/E7 gene expression and protein production. The expression of the E6 and E7 genes and the production of the relative oncoproteins was increased by strains of Gardnerella vaginalis and, to a lesser extent, by Megasphaera micronuciformis. In contrast, Prevotella bivia decreased the expression of oncogenes and the production of the E7 protein. A decreased amount of p53 and pRb was found in the cultures of SiHa cells with M. micronuciformis, and accordingly, in the same cultures, a higher percentage of cells progressed to the S-phase of the cell cycle compared to the untreated or Lactobacillus-stimulated cultures. These data confirm that L. crispatus represents the most protective component of the vaginal microbiota against neoplastic progression of HR-HPV infected cells, while M. micronuciformis and, to a lesser extent, G. vaginalis may directly interfere in the oncogenic process, inducing or maintaining the production of viral oncoproteins. |
format | Online Article Text |
id | pubmed-10138431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101384312023-04-28 Bacterial Species from Vaginal Microbiota Differently Affect the Production of the E6 and E7 Oncoproteins and of p53 and p-Rb Oncosuppressors in HPV16-Infected Cells Nicolò, Sabrina Antonelli, Alberto Tanturli, Michele Baccani, Ilaria Bonaiuto, Chiara Castronovo, Giuseppe Rossolini, Gian Maria Mattiuz, G. Torcia, M. G. Int J Mol Sci Article Vaginal dysbiosis is characterized by a decrease in the relative abundance of Lactobacillus species in favor of other species. This condition facilitates infections by sexually transmitted pathogens including high risk (HR)-human papilloma viruses (HPVs) involved in the development of cervical cancer. Some vaginal dysbiosis bacteria contribute to the neoplastic progression by inducing chronic inflammation and directly activating molecular pathways involved in carcinogenesis. In this study, SiHa cells, an HPV-16-transformed epithelial cell line, were exposed to different representative vaginal microbial communities. The expression of the HPV oncogenes E6 and E7 and the production of relative oncoproteins was evaluated. The results showed that Lactobacillus crispatus and Lactobacillus gasseri modulated the basal expression of the E6 and E7 genes of SiHa cells and the production of the E6 and E7 oncoproteins. Vaginal dysbiosis bacteria had contrasting effects on E6/E7 gene expression and protein production. The expression of the E6 and E7 genes and the production of the relative oncoproteins was increased by strains of Gardnerella vaginalis and, to a lesser extent, by Megasphaera micronuciformis. In contrast, Prevotella bivia decreased the expression of oncogenes and the production of the E7 protein. A decreased amount of p53 and pRb was found in the cultures of SiHa cells with M. micronuciformis, and accordingly, in the same cultures, a higher percentage of cells progressed to the S-phase of the cell cycle compared to the untreated or Lactobacillus-stimulated cultures. These data confirm that L. crispatus represents the most protective component of the vaginal microbiota against neoplastic progression of HR-HPV infected cells, while M. micronuciformis and, to a lesser extent, G. vaginalis may directly interfere in the oncogenic process, inducing or maintaining the production of viral oncoproteins. MDPI 2023-04-12 /pmc/articles/PMC10138431/ /pubmed/37108333 http://dx.doi.org/10.3390/ijms24087173 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nicolò, Sabrina Antonelli, Alberto Tanturli, Michele Baccani, Ilaria Bonaiuto, Chiara Castronovo, Giuseppe Rossolini, Gian Maria Mattiuz, G. Torcia, M. G. Bacterial Species from Vaginal Microbiota Differently Affect the Production of the E6 and E7 Oncoproteins and of p53 and p-Rb Oncosuppressors in HPV16-Infected Cells |
title | Bacterial Species from Vaginal Microbiota Differently Affect the Production of the E6 and E7 Oncoproteins and of p53 and p-Rb Oncosuppressors in HPV16-Infected Cells |
title_full | Bacterial Species from Vaginal Microbiota Differently Affect the Production of the E6 and E7 Oncoproteins and of p53 and p-Rb Oncosuppressors in HPV16-Infected Cells |
title_fullStr | Bacterial Species from Vaginal Microbiota Differently Affect the Production of the E6 and E7 Oncoproteins and of p53 and p-Rb Oncosuppressors in HPV16-Infected Cells |
title_full_unstemmed | Bacterial Species from Vaginal Microbiota Differently Affect the Production of the E6 and E7 Oncoproteins and of p53 and p-Rb Oncosuppressors in HPV16-Infected Cells |
title_short | Bacterial Species from Vaginal Microbiota Differently Affect the Production of the E6 and E7 Oncoproteins and of p53 and p-Rb Oncosuppressors in HPV16-Infected Cells |
title_sort | bacterial species from vaginal microbiota differently affect the production of the e6 and e7 oncoproteins and of p53 and p-rb oncosuppressors in hpv16-infected cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138431/ https://www.ncbi.nlm.nih.gov/pubmed/37108333 http://dx.doi.org/10.3390/ijms24087173 |
work_keys_str_mv | AT nicolosabrina bacterialspeciesfromvaginalmicrobiotadifferentlyaffecttheproductionofthee6ande7oncoproteinsandofp53andprboncosuppressorsinhpv16infectedcells AT antonellialberto bacterialspeciesfromvaginalmicrobiotadifferentlyaffecttheproductionofthee6ande7oncoproteinsandofp53andprboncosuppressorsinhpv16infectedcells AT tanturlimichele bacterialspeciesfromvaginalmicrobiotadifferentlyaffecttheproductionofthee6ande7oncoproteinsandofp53andprboncosuppressorsinhpv16infectedcells AT baccaniilaria bacterialspeciesfromvaginalmicrobiotadifferentlyaffecttheproductionofthee6ande7oncoproteinsandofp53andprboncosuppressorsinhpv16infectedcells AT bonaiutochiara bacterialspeciesfromvaginalmicrobiotadifferentlyaffecttheproductionofthee6ande7oncoproteinsandofp53andprboncosuppressorsinhpv16infectedcells AT castronovogiuseppe bacterialspeciesfromvaginalmicrobiotadifferentlyaffecttheproductionofthee6ande7oncoproteinsandofp53andprboncosuppressorsinhpv16infectedcells AT rossolinigianmaria bacterialspeciesfromvaginalmicrobiotadifferentlyaffecttheproductionofthee6ande7oncoproteinsandofp53andprboncosuppressorsinhpv16infectedcells AT mattiuzg bacterialspeciesfromvaginalmicrobiotadifferentlyaffecttheproductionofthee6ande7oncoproteinsandofp53andprboncosuppressorsinhpv16infectedcells AT torciamg bacterialspeciesfromvaginalmicrobiotadifferentlyaffecttheproductionofthee6ande7oncoproteinsandofp53andprboncosuppressorsinhpv16infectedcells |