Cargando…
HuR Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating Myomaker mRNA Stability
Human antigen R (HuR) is an RNA-binding protein that contributes to a wide variety of biological processes and diseases. HuR has been demonstrated to regulate muscle growth and development, but its regulatory mechanisms are not well understood, especially in goats. In this study, we found that HuR w...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138435/ https://www.ncbi.nlm.nih.gov/pubmed/37108057 http://dx.doi.org/10.3390/ijms24086893 |
Sumario: | Human antigen R (HuR) is an RNA-binding protein that contributes to a wide variety of biological processes and diseases. HuR has been demonstrated to regulate muscle growth and development, but its regulatory mechanisms are not well understood, especially in goats. In this study, we found that HuR was highly expressed in the skeletal muscle of goats, and its expression levels changed during longissimus dorsi muscle development in goats. The effects of HuR on goat skeletal muscle development were explored using skeletal muscle satellite cells (MuSCs) as a model. The overexpression of HuR accelerated the expression of myogenic differentiation 1 (MyoD), Myogenin (MyoG), myosin heavy chain (MyHC), and the formation of myotubes, while the knockdown of HuR showed opposite effects in MuSCs. In addition, the inhibition of HuR expression significantly reduced the mRNA stability of MyoD and MyoG. To determine the downstream genes affected by HuR at the differentiation stage, we conducted RNA-Seq using MuSCs treated with small interfering RNA, targeting HuR. The RNA-Seq screened 31 upregulated and 113 downregulated differentially expressed genes (DEGs) in which 11 DEGs related to muscle differentiation were screened for quantitative real-time PCR (qRT-PCR) detection. Compared to the control group, the expression of three DEGs (Myomaker, CHRNA1, and CAPN6) was significantly reduced in the siRNA-HuR group (p < 0.01). In this mechanism, HuR bound to Myomaker and increased the mRNA stability of Myomaker. It then positively regulated the expression of Myomaker. Moreover, the rescue experiments indicated that the overexpression of HuR may reverse the inhibitory impact of Myomaker on myoblast differentiation. Together, our findings reveal a novel role for HuR in promoting muscle differentiation in goats by increasing the stability of Myomaker mRNA. |
---|