Cargando…
Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases
Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measureme...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138997/ https://www.ncbi.nlm.nih.gov/pubmed/37108045 http://dx.doi.org/10.3390/ijms24086878 |
_version_ | 1785032839824146432 |
---|---|
author | Das, Ananya Adiletta, Nichole Ermolenko, Dmitri N. |
author_facet | Das, Ananya Adiletta, Nichole Ermolenko, Dmitri N. |
author_sort | Das, Ananya |
collection | PubMed |
description | Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in which the binding of translational GTPases affects inter-subunit rotation of the ribosome. We demonstrate that the highly conserved translation factor LepA, whose function remains debated, shifts the equilibrium toward the non-rotated conformation of the ribosome. By contrast, the catalyst of ribosome translocation, elongation factor G (EF-G), favors the rotated conformation of the ribosome. Nevertheless, the presence of P-site peptidyl-tRNA and antibiotics, which stabilize the non-rotated conformation of the ribosome, only moderately reduces EF-G binding. These results support the model suggesting that EF-G interacts with both the non-rotated and rotated conformations of the ribosome during mRNA translocation. Our results provide new insights into the molecular mechanisms of LepA and EF-G action and underscore the role of ribosome structural dynamics in translation. |
format | Online Article Text |
id | pubmed-10138997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101389972023-04-28 Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases Das, Ananya Adiletta, Nichole Ermolenko, Dmitri N. Int J Mol Sci Article Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in which the binding of translational GTPases affects inter-subunit rotation of the ribosome. We demonstrate that the highly conserved translation factor LepA, whose function remains debated, shifts the equilibrium toward the non-rotated conformation of the ribosome. By contrast, the catalyst of ribosome translocation, elongation factor G (EF-G), favors the rotated conformation of the ribosome. Nevertheless, the presence of P-site peptidyl-tRNA and antibiotics, which stabilize the non-rotated conformation of the ribosome, only moderately reduces EF-G binding. These results support the model suggesting that EF-G interacts with both the non-rotated and rotated conformations of the ribosome during mRNA translocation. Our results provide new insights into the molecular mechanisms of LepA and EF-G action and underscore the role of ribosome structural dynamics in translation. MDPI 2023-04-07 /pmc/articles/PMC10138997/ /pubmed/37108045 http://dx.doi.org/10.3390/ijms24086878 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Das, Ananya Adiletta, Nichole Ermolenko, Dmitri N. Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases |
title | Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases |
title_full | Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases |
title_fullStr | Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases |
title_full_unstemmed | Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases |
title_short | Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases |
title_sort | interplay between inter-subunit rotation of the ribosome and binding of translational gtpases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138997/ https://www.ncbi.nlm.nih.gov/pubmed/37108045 http://dx.doi.org/10.3390/ijms24086878 |
work_keys_str_mv | AT dasananya interplaybetweenintersubunitrotationoftheribosomeandbindingoftranslationalgtpases AT adilettanichole interplaybetweenintersubunitrotationoftheribosomeandbindingoftranslationalgtpases AT ermolenkodmitrin interplaybetweenintersubunitrotationoftheribosomeandbindingoftranslationalgtpases |