Cargando…
The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients
Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139165/ https://www.ncbi.nlm.nih.gov/pubmed/37107856 http://dx.doi.org/10.3390/ijerph20085575 |
_version_ | 1785032880831856640 |
---|---|
author | Santilli, Valter Mangone, Massimiliano Diko, Anxhelo Alviti, Federica Bernetti, Andrea Agostini, Francesco Palagi, Laura Servidio, Marila Paoloni, Marco Goffredo, Michela Infarinato, Francesco Pournajaf, Sanaz Franceschini, Marco Fini, Massimo Damiani, Carlo |
author_facet | Santilli, Valter Mangone, Massimiliano Diko, Anxhelo Alviti, Federica Bernetti, Andrea Agostini, Francesco Palagi, Laura Servidio, Marila Paoloni, Marco Goffredo, Michela Infarinato, Francesco Pournajaf, Sanaz Franceschini, Marco Fini, Massimo Damiani, Carlo |
author_sort | Santilli, Valter |
collection | PubMed |
description | Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation. |
format | Online Article Text |
id | pubmed-10139165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101391652023-04-28 The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients Santilli, Valter Mangone, Massimiliano Diko, Anxhelo Alviti, Federica Bernetti, Andrea Agostini, Francesco Palagi, Laura Servidio, Marila Paoloni, Marco Goffredo, Michela Infarinato, Francesco Pournajaf, Sanaz Franceschini, Marco Fini, Massimo Damiani, Carlo Int J Environ Res Public Health Article Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation. MDPI 2023-04-19 /pmc/articles/PMC10139165/ /pubmed/37107856 http://dx.doi.org/10.3390/ijerph20085575 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Santilli, Valter Mangone, Massimiliano Diko, Anxhelo Alviti, Federica Bernetti, Andrea Agostini, Francesco Palagi, Laura Servidio, Marila Paoloni, Marco Goffredo, Michela Infarinato, Francesco Pournajaf, Sanaz Franceschini, Marco Fini, Massimo Damiani, Carlo The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients |
title | The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients |
title_full | The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients |
title_fullStr | The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients |
title_full_unstemmed | The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients |
title_short | The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients |
title_sort | use of machine learning for inferencing the effectiveness of a rehabilitation program for orthopedic and neurological patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139165/ https://www.ncbi.nlm.nih.gov/pubmed/37107856 http://dx.doi.org/10.3390/ijerph20085575 |
work_keys_str_mv | AT santillivalter theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT mangonemassimiliano theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT dikoanxhelo theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT alvitifederica theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT bernettiandrea theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT agostinifrancesco theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT palagilaura theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT servidiomarila theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT paolonimarco theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT goffredomichela theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT infarinatofrancesco theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT pournajafsanaz theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT franceschinimarco theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT finimassimo theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT damianicarlo theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT santillivalter useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT mangonemassimiliano useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT dikoanxhelo useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT alvitifederica useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT bernettiandrea useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT agostinifrancesco useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT palagilaura useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT servidiomarila useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT paolonimarco useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT goffredomichela useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT infarinatofrancesco useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT pournajafsanaz useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT franceschinimarco useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT finimassimo useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients AT damianicarlo useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients |