Cargando…

The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients

Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Santilli, Valter, Mangone, Massimiliano, Diko, Anxhelo, Alviti, Federica, Bernetti, Andrea, Agostini, Francesco, Palagi, Laura, Servidio, Marila, Paoloni, Marco, Goffredo, Michela, Infarinato, Francesco, Pournajaf, Sanaz, Franceschini, Marco, Fini, Massimo, Damiani, Carlo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139165/
https://www.ncbi.nlm.nih.gov/pubmed/37107856
http://dx.doi.org/10.3390/ijerph20085575
_version_ 1785032880831856640
author Santilli, Valter
Mangone, Massimiliano
Diko, Anxhelo
Alviti, Federica
Bernetti, Andrea
Agostini, Francesco
Palagi, Laura
Servidio, Marila
Paoloni, Marco
Goffredo, Michela
Infarinato, Francesco
Pournajaf, Sanaz
Franceschini, Marco
Fini, Massimo
Damiani, Carlo
author_facet Santilli, Valter
Mangone, Massimiliano
Diko, Anxhelo
Alviti, Federica
Bernetti, Andrea
Agostini, Francesco
Palagi, Laura
Servidio, Marila
Paoloni, Marco
Goffredo, Michela
Infarinato, Francesco
Pournajaf, Sanaz
Franceschini, Marco
Fini, Massimo
Damiani, Carlo
author_sort Santilli, Valter
collection PubMed
description Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation.
format Online
Article
Text
id pubmed-10139165
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101391652023-04-28 The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients Santilli, Valter Mangone, Massimiliano Diko, Anxhelo Alviti, Federica Bernetti, Andrea Agostini, Francesco Palagi, Laura Servidio, Marila Paoloni, Marco Goffredo, Michela Infarinato, Francesco Pournajaf, Sanaz Franceschini, Marco Fini, Massimo Damiani, Carlo Int J Environ Res Public Health Article Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation. MDPI 2023-04-19 /pmc/articles/PMC10139165/ /pubmed/37107856 http://dx.doi.org/10.3390/ijerph20085575 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Santilli, Valter
Mangone, Massimiliano
Diko, Anxhelo
Alviti, Federica
Bernetti, Andrea
Agostini, Francesco
Palagi, Laura
Servidio, Marila
Paoloni, Marco
Goffredo, Michela
Infarinato, Francesco
Pournajaf, Sanaz
Franceschini, Marco
Fini, Massimo
Damiani, Carlo
The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients
title The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients
title_full The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients
title_fullStr The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients
title_full_unstemmed The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients
title_short The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients
title_sort use of machine learning for inferencing the effectiveness of a rehabilitation program for orthopedic and neurological patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139165/
https://www.ncbi.nlm.nih.gov/pubmed/37107856
http://dx.doi.org/10.3390/ijerph20085575
work_keys_str_mv AT santillivalter theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT mangonemassimiliano theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT dikoanxhelo theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT alvitifederica theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT bernettiandrea theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT agostinifrancesco theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT palagilaura theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT servidiomarila theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT paolonimarco theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT goffredomichela theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT infarinatofrancesco theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT pournajafsanaz theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT franceschinimarco theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT finimassimo theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT damianicarlo theuseofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT santillivalter useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT mangonemassimiliano useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT dikoanxhelo useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT alvitifederica useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT bernettiandrea useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT agostinifrancesco useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT palagilaura useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT servidiomarila useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT paolonimarco useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT goffredomichela useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT infarinatofrancesco useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT pournajafsanaz useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT franceschinimarco useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT finimassimo useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients
AT damianicarlo useofmachinelearningforinferencingtheeffectivenessofarehabilitationprogramfororthopedicandneurologicalpatients